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FREE ENERGY, ENTROPY, AND MAGNETIZATION OF A

ONE-DIMENSIONAL ISING MODEL OF A DILUTED MAGNET

S. V. Semkin∗ and V. P. Smagin∗

We consider a one-dimensional Ising model (chain) with the the nearest-neighbor interaction and with a

random nonmagnetic dilution. We find the exact free energy of such a chain as a function of the impurity

concentration, temperature, and the external magnetic field. In the case of antiferromagnetic interaction

in the chain, we find the specific magnetization, the mean value of the product of neighboring spins, and

the entropy as functions of these parameters. We study the residual system entropy.
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1. Introduction

It is known[1], [2] that the critical behavior of diluted or amorphous magnets can differ significantly

from the behavior of magnets with a translational lattice symmetry. However, even for simple models of

magnets with dilution, for example, for the Ising model with nonmagnetic impurities, it is impossible to

construct the exact solution for flat or three-dimensional lattices. Therefore, one-dimensional models of

magnets were often considered [3]–[6].

In this paper, we obtain an exact solution of the one-dimensional Ising model with fixed, randomly

located (frozen) nonmagnetic impurities. This exact solution is based on representing the partition function

of the diluted chain as a product of the partition functions of isolated segments of the chain with different

lengths. To calculate the partition functions of these segments, we use the method of a nonsymmetric

transfer matrix [3], in contrast to the method used in [6].

In the one-dimensional Ising model, there is no phase transition at a finite temperature [3]; for any

dilution, the one-dimensional Ising chain with the nearest-neighbor interaction decomposes into decoupled

finite-length segments of magnetic atoms. In other words, there are no magnetic or concentration transitions

in the diluted one-dimensional Ising model. But at low concentrations of magnetic atoms or bonds (that

are below the percolation threshold [1]), the diluted Ising model on any lattice is also a collection of finite

fragments of this lattice, and finding thermodynamic averages reduces, one way or another, to averaging

over the ensemble of such finite fragments.

The aim of this paper is to calculate the free energy of the diluted Ising chain at any values of the exter-

nal magnetic field, concentration of magnetic bonds, and temperature, and for any value of the exchange

interaction constant. In addition, we study the magnetic, thermodynamic, and frustrating properties of

this model.
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2. Partition function of the one-dimensional Ising model with the
nonmagnetic dilution

We consider a one-dimensional Ising magnet (chain) with the nearest-neighbor interaction. We assume

that some bonds are accidentally disrupted, for example, by fixed nonmagnetic impurities, such that there

is a probability b that atoms at neighboring sites are magnetically coupled and the probability 1 − b that

they are not. In the case of such a dilution, the chain is divided into segments of magnetic atoms with

different lengths, which are separated by nonmagnetic bonds. The partition function of such a chain of

length N is given by

ZN = ZN1
1 × ZN2

2 × · · · × ZNm
m , (1)

where Nn is the number of segments with the lengths n, Zn is the partition function of such a segment,

and N =
∑

nNn. The free energy at the temperature T per magnetic atom is f = −kT (lnZN )/N , where

k is the Boltzmann constant. From (1), we obtain

− f

kT
=
∑
n

nNn

N

lnZn

n
.

As N → ∞, the ratio nNn/N tends to pn, the probability that an arbitrarily taken magnetic atom belongs

to a segment of n spins. Hence, as N → ∞,

− f

kT
=
∑
n

pn
lnZn

n
. (2)

It is obvious that pn = nb(n−1)(1 − b)2, and we calculate the partition function for the segment of n

Ising spins σ1, σ2, . . . , σn as

Zn =
∑

σ1,...,σn

exp

(
K

n−1∑
i

σiσi+1 + h

n∑
i

σi

)
= Φn(+1) + Φn(−1), (3)

where

Φn(σn) =
∑

σ1,...,σn−1

exp

(
K

n−1∑
i

σiσi+1 + h

n∑
i

σi

)
.

Here, K = J/kT (J is the exchange integral (exchange energy)), T is the temperature, and h = H/kT (H

is the external field). These dimensionless parameters have a clear meaning: K is the ratio of the exchange

interaction energy to the thermal one, and h is the ratio of the spin–external-field interaction energy to

thermal energy.

It is possible to write recursive relations for Φn(σ); it is convenient to represent them in matrix form(
Φn(+1)

Φn(−1)

)
= V

(
Φn−1(+1)

Φn−1(+1)

)
, (4)

where (
Φ1(+1)

Φ1(−1)

)
=

(
eh

e−h

)
, V =

(
e(K+h) e−K+h)

e(−K−h) e(K−h)

)
,

i.e., V is a nonsymmetric transfer matrix [3]. Thus,(
Φn(+1)

Φn(−1)

)
= Vn−1

(
eh

e−h

)
. (5)
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3. Thermodynamic functions of the diluted Ising chain

If the magnet free energy is known as a function of the temperature T , the external field H, and the

exchange energy J , then it is possible to express the magnetization m = ⟨σi⟩, the internal energy u, the

entropy s, and the average value of the product of neighboring spins v = ⟨σiσi+1⟩ (per one magnetic atom)

as [7]

m = − ∂f

∂H
, u = −T 2 ∂

T

(
f

T

)
, s = − ∂f

∂T
, v = −∂f

∂J
. (6)

Passing to the variables K and h and setting α = −f/kT = limN→∞
lnZN

N , we obtain

m =
∂α

∂h
, v =

∂α

∂K
,

s

k
= α− (hm+Kv), u = −kT (hm+Kv). (7)

The eigenvalues λ1 and λ2 of the matrix V are found from the corresponding characteristic equation

λ1,2 = eK coshh±R, R =
√
e2K coshh+ e−2K , (8)

which shows that they are the same as those of the symmetrized transfer matrix of the Ising chain [3]. Calcu-

lating the eigenvectors of V corresponding to the eigenvalues λ1 and λ2n and constructing the diagonalizing

matrix R from them, we represent V in the form

V = R

(
λ1 0

0 λ2

)
R−1.

We also represent the matrices R and R−1 in trigonometric form

R =

(
cosφ1 − sinφ2

sinφ1 cosφ2

)
, R−1 =

1

∆

(
cosφ1 sinφ2

− sinφ1 cosφ2

)
,

where φ1 and φ2 belong to the interval from 0 to π/2 and are defined by the conditions

tanφ1 = λ1e
K−h − e2K , cotφ2 = e2K − λ2e

K−h, ∆ = cos(φ1 − φ2). (9)

Hence we find the partition function Zn for a segment of n spins in the form

Zn = λn−1
1 (A1 +A2δ

n−1), δ =
λ2

λ1
,

A1 =
1

∆
(eh cosφ2 + e−h sinφ2)(cosφ1 + sinφ1),

A2 =
1

∆
(eh sinφ1 − e−h cosφ1)(− cosφ2 + sinφ2).

Expressions for the coefficients A1,2 can be simplified using (8) and (9):

A1,2 = coshh± 1 + e2K(sinhh)
2

ReK
. (10)

The free energy of the entire system (per one atom) is

f = −kT

(
b lnλ1 + (1− b)2

∞∑
n=0

bn ln(A1 +A2δ
n)

)
. (11)
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At h = 0, the calculations are significantly simplified. The transfer matrix V becomes symmetric,

and its eigenvectors, orthogonal. The eigenvalues are λ1 = 2 coshK and λ2 = 2 sinhK. Free energy (11)

becomes

f0 = −kT (b ln coshK + ln 2). (12)

This result (12) can be obtained directly using the high-temperature representation of the partition function

of a diluted Bethe lattice (in particular, of a linear chain) in the framework of the Kramers–Wannier

duality [3]. We use the representation of the partition function of the Ising magnet in the form

ZN = (coshK)Nb

∑(∏
(1 + σiσj tanhK)

)
,

where the summation is performed over all N lattice spins, and the product, over Nb bonds. Because there

are no closed paths in any Bethe lattice, we obtain

lnZN

N
=

Nb

N
ln(coshK) + ln 2,

which is equivalent to (12) at Nb/N = b.

Thus, the thermodynamic functions of the diluted Ising chain are given by formulas (7) with

α = b lnλ1 + (1− b)2
∞∑

n=0

bn ln

(
(1 + δn) coshK + (1 + δn)

1 + e2K(sinhh)
2

ReK

)
, (13)

where δ = λ2/λ1, the values of λ1,2 and R are found from (8), and in differentiating with respect to h

and K, we must use the formulas

∂δ

∂h
= −2

eK sinhK

R
δ,

∂δ

∂K
= 2

eK sinhK

R

e−2K

e2K − e−2K
δ.

4. Results and conclusions

Formulas (7) and (13) allow calculate the thermodynamic functions for any diluted Ising chain in the

cases J > 0 and J < 0, i.e., for the ferromagnetic and antiferromagnetic interaction types. In what follows,

we restrict ourself to considering only the antiferromagnetic case J < 0, because the system then has

the most interesting properties [8], [9]. In Fig. 1, we plot the specific magnetization m = ⟨σi⟩ (curve I)

as a function of the external field (in the units of |J |) for J < 0. The plot is constructed for the low

temperature |K| = 25, because the “stepwise” character of the dependence m(H) can be clearly seen for

such temperatures; the steps are smoothed as the temperature increases. As T → 0, the behavior of the

magnetization m(H) can be found directly from expressions obtained from (7) and (13) by passing to

the corresponding limit. However, it is easy to understand what the values and positions of the steps in

Fig. 1 are by considering the magnetization in the ground state. The first step on curve I corresponds to

the field H ∈ (0; |J |). We recall that the diluted chain is regarded as an ensemble of linear fragments of

magnetic atoms of the lengths n contained in that ensemble with the probability pn; accordingly, for the

diluted chain, all specific quantities are calculated as averages over such an ensemble with the weights pn =

nbn−1(1−b)2. Therefore, for the field H ∈ (0; |J |), the contribution to the magnetization of the ground state

of fragments with even lengths n is zero, and the fragments with odd lengths have the average ground-state

magnetization 1/n (per fragment atom). Therefore, on the first step of curve I, the magnetization m1 is

m1 =

∞∑
k=0

p2k+1

2k + 1
= (1− b)2

∞∑
k=0

b2k =
1− b

1 + b
. (14)
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Fig. 1. Dependence of dimensionless specific values of m = ⟨σi⟩ (curve I) and v = ⟨σiσi+1⟩ (curve II)

on the external magnetic field H (in units of |J |) at b = 0.5.

Fig. 2. Dependence of the specific entropy (in units of the Boltzmann constant k) on the external

magnetic field H (in units of |J |) for different temperatures at b = 0.5 for kT = |J |/25 (curve I),

kT = |J |/3 (curve II), and kT = |J |/2 (curve III).

The second step of curve I corresponds to external field values in the interval H ∈ (|J |; 2|J |). The

magnetization m2 on this step can be calculated if we recall that in this range of fields, the contribution to

the ground-state magnetization is made by fragments with both odd and even lengths:

m2 =
1− b

1 + b
(1 + 2b). (15)

The third step of curve I corresponds to H > 2|J |. In this range, all spins are oriented in the field

direction; consequently, the magnetization in the ground state is m3 = 1. Arguing similarly, we can

appropriately interpret the steps on curve II, which shows the dependence of v = ⟨σiσi+1⟩ on the external

field at low temperatures. On the first step of this curve, the value of v1 corresponds to H ∈ [0; |J |) and is

v1 = −b. We have v2 = b(1− 3b)/(1 + b) for H ∈ (|J |; 2|J |) and v3 = b for H > 2|J |.
The dependence of the system entropy on the external field is shown in Fig. 2. At low temperatures

(K = 25) and concentrations differing from 0 or 1, the entropy does not tend to zero as T → 0 ifH ∈ [0; 2|J |)
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Fig. 3. Dependence of the specific entropy (in units of the Boltzmann constant k) on the concentration

of magnetic bonds b in the case of different values of the external field H for H = 1.5|J | (curve I),

H = 0.5|J | (curve II), H = |J | (curve III), and H = 2|J | (curve IV).

(curve I in Fig. 2), which means a degeneracy of the ground state of the diluted antiferromagnetic chain in

the case of such fields. The degeneracy of low-energy states due to competing interactions in the system is

a criterion of frustration [10], [11]. As can be seen from Fig. 2 (curve I), for the system under consideration,

local maxima of the residual entropy exist forH = |J | andH = 2|J |. However, we note that the ground-state

degeneracy in the system of Ising spins is not necessarily related to the presence of competing interactions

and can have a simpler “paramagnetic” nature. At H = 0, the diluted Ising chain consists of fragments

that are not coupled to each other; each of them can be oriented in two ways with the same minimum

energy without changing the internal state, which gives the residual specific entropy s0 = k(1 − b) ln 2.

For H > 0, this paramagnetic degeneracy disappears completely in the ferromagnetic (J > 0) case. In the

antiferromagnetic case (J < 0), forH ∈ (0; |J |), the paramagnetic degeneracy is preserved only for fragments

with an even number of atoms, which gives the residual specific entropy s1 = kb(1 − b)/(1 + b) ln 2. In

stronger fields (H ⩾ |J |), the residual entropy is also related to the degeneracy of the ground states of

fragments. The dependence of the entropy on the external field becomes more “smoothed” with increasing

temperature and monotonous as the temperature continues to increase (curves II and III in Fig. 2).

The dependence of the residual specific entropy on the concentration of magnetic bonds b is shown in

Fig. 3. For all H ∈ (0; 2|J |), the residual entropy depends nonmonotonically on the concentration (curves

I, II, and III in Fig. 3), which can also be observed for diluted frustrated magnets [2]; and for H = 2|J |,
the residual entropy increases monotonically to k ln 1+

√
5

2 (the logarithm of the golden section) [5], [12] at

b = 1 (curve IV in Fig. 3).

Although the one-dimensional chain is in a sense a “pathological” case of the Ising model (there is

no phase transition at a finite temperature), the above analysis allows advancing some general hypotheses

regarding the phase diagram and the residual entropy of the diluted Ising antiferromagnet on an arbitrary

lattice with a coordination number q. In any case, irrespective of the degree of nonmagnetic dilution b, the

magnetic field H = q|J | must lead to a nonzero residual entropy [12]. But it can be hypothesized that the

residual entropy of the diluted Ising antiferromagnet for b < 1 is nonzero in the entire range H ⩽ q|J | and
attains local maxima at H = n|J |, where n = 1, . . . , q.
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