ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2023, том 59, № 5, с. 522–529

__ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 546.04+544.726

СИНТЕЗ И СОРБЦИОННЫЕ СВОЙСТВА АЛЮМОСИЛИКАТА ЛИТИЕВОЙ ФОРМЫ

© 2023 г. П. С. Гордиенко^{*a*}, Е. В. Пашнина^{*a*}, С. Б. Ярусова^{*a*, *b*, *, Е. А. Нехлюдова^{*a*, *b*}, И. Г. Жевтун^{*a*}, И. А. Шабалин^{*a*}, Н. В. Зарубина^{*c*}, С. Ю. Будницкий^{*c*}, В. Г. Курявый^{*a*}}

^аИнститут химии Дальневосточного отделения Российской академии наук, пр. 100-летия Владивостока, 159, Владивосток, 690022 Россия

^bВладивостокский государственный университет, ул. Гоголя, 41, Владивосток, 690014 Россия

^сДальневосточный геологический институт ДВО РАН,

пр. 100-летия Владивостока, 159, Владивосток, 690022 Россия

*e-mail: varusova 10@mail.ru

Поступила в редакцию 17.04.2023 г. После доработки 17.06.2023 г. Принята к публикации 17.06.2023 г.

В работе приведены данные по синтезу наноструктурированного, рентгеноаморфного алюмосиликата лития, с соотношением Si : Al, равным 3 : 1. Исследован состав, морфология, термическое поведение. Получена изотерма сорбции ионов Cs⁺ в статических условиях при соотношении T : $\mathbb{X} = 1$: 400. Определена максимальная сорбционная емкость, степень извлечения и коэффициенты распределения цезия. Получены данные по кинетике сорбции ионов Cs⁺ при температурах 30 и 60°C, рассчитана энергия активации процесса сорбции и коэффициенты диффузии.

Ключевые слова: алюмосиликат лития, синтез, сорбционные свойства, цезий, кинетика, энергия активации, коэффициенты диффузии

DOI: 10.31857/S0044185623700638, EDN: VFZUOA

введение

Эффективное решение экологических проблем, связанных с очисткой, прежде всего, водных акваторий, от долгоживущих радиоизотопов цезия, стронция и ряда тяжелых металлов, предполагает активный поиск, как новых видов материалов, так и синтез сорбентов известного класса, но при условиях, позволяющих получать материал заданного состава, с определенной дисперсностью, с улучшенными функциональными свойствами. Актуальность подобных исследований стала очевидной в связи с рядом экологических катастроф, произошедших на атомных электростанциях и предприятиях по переработке ядерных материалов с середины 60-х гг. прошлого века и до настоящего времени.

Современный атомный энергетический цикл производства электроэнергии нуждается в высокоэффективных сорбентах радионуклидов, матрицах на их основе, обладающих комплексом физико-химических и механических характеристик: высокой устойчивостью, как к механическим нагрузкам, так и высокой химической и радиационной стойкостью в различных средах в условиях длительного захоронения высокоактивных ядерных отходов. Силикаты и алюмосиликаты удовлетворяют таким требованиям, поэтому относятся к востребованным природным и синтетическим минералам, широко применяемым в качестве сорбентов токсичных веществ в жидких и газовых средах, в качестве катализаторов, в производстве различных видов углеводородов, в медицине и т.д. [1-4]. Природные и синтетические алюмосиликаты (цеолиты, глины), а также композиционные материалы, созданные с их использованием, занимают особое место среди неорганических материалов для извлечения радионуклидов ⁹⁰Sr, ¹³⁷Cs и других изотопов из технологических вод [5–9].

Ранее в Институте химии Дальневосточного отделения Российской академии наук из водных многокомпонентных систем были синтезированы наноструктурированные алюмосиликаты щелочных и щелочноземельных металлов с удельной поверхностью $30-300 \text{ м}^2 \text{ г}^{-1}$ и высокими значениями сорбционной емкости по отношению к ионам Cs⁺ и Sr²⁺. Были исследованы такие классы соединений как алюмосиликаты калия и натрия $Me_xAl_xSi_yO_{(2y + 2x)} \cdot nH_2O$ (где $Me = K^+$, Na^+), алюмосиликаты и силикаты кальция и бария (MeAl_2Si_nO_{(n} + 2)2 \cdot mH_2O; MeO \cdot nSiO_2 \cdot mH_2O (где $Me = Ca^{2+}$, Ba^{2+}) [10–16].

С учетом ранее полученных результатов по синтезу и сорбционным характеристикам синте-

тического соединения KAlSi₃O₈·1.5H₂O [10], метолом искрового плазменного спекания был осушествлен синтез твердотельных матриц на основе аморфного KAlSi₃O₈·1.5H₂O и алюмосиликата калия из растительных отходов, насыщенных цезием, для иммобилизации цезия-137. Впервые получены образцы твердотельных матриц на основе $((Cs,K)AlSi_3O_8)$ с высокими значениями относительной плотности. прочности при сжатии и микротверлости по Виккерсу. Была локазана их высокая гидролитическая устойчивость (в пределах 10^{-7} г см⁻² сут⁻¹) и низкий коэффициент диффузии D_е цезия при выщелачивании из объема матриц (в пределах) 7.36 × 10^{-9} и 9.07 × 10^{-14} см² с⁻¹ для модельной ((Cs,K)AlSi₃O₈) – матрицы и RS-(K,Cs)AlSi₃O₈ – матрицы (из рисовой соломы), соответственно. Полтверждено высокое качество полученных изделий в соответствии с ГОСТ Р 50926-96 и существующими аналогами, что представляет практический интерес для технологий очистки и переработки РАО и создания радиоизотопной продукции [17, 18].

В связи с тем, что наноструктурированные алюмосиликаты щелочных и щелочноземельных металлов имеют высокие значения сорбционной емкости по отношению к ионам цезия, нами было сделано предположение об эффективности использования алюмосиликатов лития. При этом следует отметить, что основная доля литературы по силикатам лития посвящена вопросам синтеза данных соединений и их применению в процессах получения, например, литиевой алюмосиликатной стеклокерамики, литиевых ионных сит для извлечения лития из низкосортных рассолов, сорбентов CO₂ и т.д. [19–23].

Целью данной работы является синтез и исследование состава, морфологии, термического поведения и сорбционных свойств в статических условиях наноструктурированного алюмосиликата лития с соотношением Si/Al, равным 3 : 1, по отношению к ионам цезия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез алюмосиликата лития

Синтез алюмосиликата литиевой формы с заданным соотношением Si/Al проводили согласно реакции:

$$4\text{LiOH} + 3\text{SiO}_{2} \cdot n\text{H}_{2}\text{O} + \text{AlCl}_{3} \cdot 6\text{H}_{2}\text{O} \rightarrow$$

$$\rightarrow \text{LiAlSi}_{3}\text{O}_{8} + 3\text{LiCl} + 11\text{H}_{2}\text{O}.$$
 (1)

На первом этапе было получено жидкое литиевое стекло с силикатным модулем, равным 1.5:

$$4\text{LiOH} + 3\text{SiO}_2 \rightarrow \text{Li}_4\text{Si}_3\text{O}_8 + \text{H}_2\text{O}.$$
 (2)

Затем в полученный раствор при постоянном перемешивании добавляли раствор хлорида алюминия. Соотношение компонентов соответствовало уравнению (1), а pH раствора при окончании процесса синтеза соответствовало нейтральному значению (pH 7). Для синтеза были взяты реактивы: гидроксид лития (ГОСТ 8595-83), мелкодисперсный кремнезем (микрокремнезем конденсированный ТУ 5743-048-02495332-96) марки МКУ-85 и алюминий хлористый 6-водный марки "х. ч." (ТУ СТП КОМП 2-191-10). Гидроксид лития растворяли в дистиллированной воде, которую предварительно кипятили для удаления молекул растворенного CO_2 , чтобы предотвратить образование карбоната лития.

Полученный осадок алюмосиликата лития отделяли от раствора через фильтр "синяя лента", промывали дистиллированной водой до отрицательной реакции на хлор-ионы и сушили при температуре 110°C.

Опыты по сорбции ионов Cs⁺

Опыты по сорбции ионов Cs⁺ проводили в статических условиях при соотношении твердой и жидкой фаз, равном 1 : 400, и температуре 20°C из водных растворов хлорида цезия без солевого фона с различными начальными концентрациями ионов Cs⁺ от 0.5 до 106.8 ммоль π^{-1} при перемешивании на магнитной мешалке RT 15 power (IKA WERKE, ФРГ) в течение 3 ч.

Опыты по кинетике сорбции ионов Cs⁺ проводили в статических условиях при соотношении твердой и жидкой фаз, равном 1 : 400, и температурах 30 и 60°C из водных растворов хлорида цезия без солевого фона с начальной концентрацией ионов Cs⁺ 3.35 мг π^{-1} в интервале от 3 до 20 мин.

Методы анализа

Рентгенограммы образцов снимали на автоматическом дифрактометре D8 ADVANCE (Германия) с вращением образца в Cu K_{α} -излучении. Рентгенофазовый анализ (РФА) проводили с использованием программы поиска EVA с банком порошковых данных PDF-2.

Для количественного определения элементного состава синтезированных алюмосиликатов применен энергодисперсионный рентгенофлуоресцентный метод с использованием спектрометра Shimadzu EDX 800 HS (Япония). Навеску образца растирали в агатовой ступке с борной кислотой (2:1 по весу) и помешали в пресс-форму диаметром 20 мм. Таблетку-излучатель прессовали в течение 2 мин при давлении 5000 кг, после чего помешали в спектрометр и проводили измерения. Время экспозиции 100 с в каждом энергетическом канале, источник излучения рентгеновская трубка с Rh-анодом, расчет концентрации элементов производили по методу фундаментальных параметров с помощью программного комплекса спектрометра без учета легких элементов. Относительная погрешность определения элементного состава не превышала ±10%.

Содержание лития в образце определяли с помощью метода масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) с последующим пересчетом на мольное содержание. Для предварительного перевода образца в растворимое состояние навеску вещества обрабатывали горячим раствором плавиковой кислоты для удаления кремния в виде SiF₄. Далее раствор мокрых солей фторида лития (LiF) и фторида алюминия (AlF₃) кипятили в растворе 1н соляной кислоты для перевода фторидов в растворимые соли AlCl₃ и LiCl, а также удаления следов фтора из раствора. Далее растворы переносили в мерные полипропиленовые колбы для последующего анализа методом ИСП-МС.

Термогравиметрический анализ проводили с использованием дериватографа Q-1500 D системы Φ . Паулик, П. Паулик, Л. Эрдеи фирмы "MOM" (Венгрия) (точность определения температуры $\pm 5^{\circ}$ C), при обжиге образцов до 900°C при скорости 10°C/мин в открытом платиновом тигле на воздухе.

Удельную поверхность образцов определяли методом низкотемпературной адсорбции азота с использованием прибора "Сорбтометр-М" (Россия).

Плотность алюмосиликатов определяли с помощью пикнометра.

Изучение морфологии образцов проводили на сканирующем электронном микроскопе высокого разрешения HitachiS5500 (Япония). Перед съем-кой образцы покрывали проводящим слоем платины. Съемку проводили при ускоряющем напряжении 7 кВ и вакууме 10⁻⁵ мм ртутного столба.

Определение концентрации ионов Li⁺ и Cs⁺ цезия в анализируемых растворах выполняли методом ИСП-МС на спектрометре Agilent 8800 (Agilent Technologies, U.S.A., 2013) с относительной погрешностью не более 10%. Перед выполнением измерений растворы разбавляли в 100 раз. Для анализа были выбраны следующие аналитические изотопы: ⁷Li и ¹³³Cs.

Для градуирования прибора использовали многоэлементный сертифицированный раствор ICP-MS Verification Standard E (High Purity Standards, U.S.A.). Предел ИСП-МС определения (ПО) для Li 0.07 мкг дм⁻³, для Cs – 0.03 мкг дм⁻³.

Сорбционную емкость (*A_c*, ммоль г⁻¹) исследуемых образцов рассчитывали по формуле:

$$A_c = \frac{(C_{\text{\tiny HCX}} - C_p)}{m} V, \qquad (3)$$

где $C_{\text{исх}}$ – исходная концентрация ионов Cs⁺ в растворе, ммоль π^{-1} ; C_{p} – равновесная концентрация ионов Cs⁺ в растворе, ммоль π^{-1} ; V– объем раствора, π ; m – масса сорбента, г.

Рис. 1. Дифрактограмма образца алюмосиликата лития: (*a*) исходный образец после сушки при температуре 110°С, (δ) образец после обжига при 1000°С.

Степень извлечения ионов Cs^+ (α , %) рассчитывали по формуле:

$$\alpha = \frac{(C_{\text{ucx}} - C_{\text{p}})}{C_{\text{ucx}}} \times 100\%.$$
(4)

Коэффициент межфазного распределения $(K_d, \, \text{мл r}^{-1})$ определяли следующим образом:

$$K_d = \frac{(C_{\text{ucx}} - C_p)V}{C_p m}.$$
(5)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенофазовый анализ полученного образца до и после обжига (рис. 1) показал, что полученное соединение является рентгеноаморфным, о чем свидетельствует размытый пик, характерный для аморфных веществ в диапазоне углов $15^{\circ}-35^{\circ}$. Видно, что при нагреве образца до 1000° С (рис. 1, δ) происходит частичная кристаллизация, что сопровождается появлением пиков на рентгенограмме и смещением максимума гало. Но отнести зафиксированные пики к конкретной кристаллической фазе не удалось.

По данным рентгенофлуоресцентного анализа, содержание Si составляет 74.9, а Al – 24.8 (мас. %), то есть фактическое соотношение Si/Al = 3 : 1, что соответствует заданному соотношению при синтезе (содержание кремния 2.7 моль, алюминия – 0.9 моль). Согласно данным, полученным методом ИСП-МС, содержание лития в образце составляет 4.38 мас. %, что в пересчете на моль, составляет 0.63.

Из представленной на рис. 2 термогравиграммы видно, что процесс постепенной дегидратации синтетического алюмосиликата лития происходит в температурном интервале от 30 до 500°С и характеризуется уширенным эндоэффектом. Удаление адсорбционной воды происходит до 110°С (это довольно условная величина) и сопровождается потерей 15.6% веса. Суммарная потеря веса 37.2%. За вычетом потерь веса, связанных с адсорбцион-

Рис. 2. Термогравиграмма образца алюмосиликата лития.

ной водой, 21.6% потери веса приходится на связанную кристаллизационную воду, что соответствует 4.7 молекулам H_2O . На основании результатов энергодисперсионного рентгенофлуоресцентного метода, метода ИСП-МС и термогравиметрического анализа рассчитана брутто формула полученного соединения: $Li_{0.63}H_{0.27}Al_{0.9}Si_{2.7}O_8\cdot4.7H_2O$.

Удельная поверхность образца 132.0 м² г⁻¹. Плотность полученного образца 2.5 г см⁻³.

На рис. 3 приведены СЭМ изображения алюмосиликата лития после сушки (исходный образец).

Алюмосиликат имеет рыхлую слоистую структуру, характерную для глин и глинистых минералов типа каолинит, монтмориллонит, сепиолит, палыгорскит, вермикулит и др. (рис. 3, 4а). При нагреве исходного образца до 1000°С морфология наблюдаемой поверхности заметно изменяется. Формируются многочисленные поры диаметром не более 20–100 нм (рис. 4б).

Для оценки сорбционных свойств полученную изотерму анализировали в координатах уравнения Ленгмюра и эмпирического уравнения Фрейндлиха.

Уравнение Ленгмюра:

$$\frac{C_{\rm p}}{A_{\rm c}} = \frac{1}{A_{\rm m}k} + \frac{C_{\rm p}}{A_{\rm m}},$$
 (6)

где C_p — равновесная концентрация ионов Cs⁺ в растворе, A_m — максимальная сорбционная ем-кость, k — константа Ленгмюра.

Константа уравнения была рассчитана из наклона и пересечения прямой на графике в соответствующих координатах линейного уравнения C_p/A_c от C_p : y = 0.1613x + 6.0617 ($R^2 = 0.8516$). Найденные параметры уравнения Ленгмюра: $A_m =$ = 6.2 ммоль г⁻¹, k = 0.03 л ммоль⁻¹. С учетом погрешности измерений концентраций ионов Cs⁺ в пределах 10–15% методом ИСП-МС, экспериментальные данные по максимальной сорбционной емкости и рассчитанные по уравнению Ленгмюра одного порядка.

Полученное высокое значение максимальной сорбционной емкости можно объяснить морфологией алюмосиликата лития, высокой удельной поверхностью (более 130 м² г⁻¹) и высоким химическим сродством цезия и лития.

Зависимость коэффициента межфазного распределения цезия на алюмосиликате лития и степени извлечения ионов Cs⁺ от соотношения твердой и жидкой фаз приведена в табл. 1.

Рис. 3. СЭМ изображения частиц алюмосиликата литиевой формы (исходный образец).

Рис. 4. СЭМ изображения частиц алюмосиликата литиевой формы: (а) исходный образец; (б) после обжига при 1000°С.

Из полученных данных следует, что при T : $\mathcal{K} = 1$: 40 степень извлечения ионов Cs⁺ достигает 97%, а наибольшее значение коэффициента распределения наблюдается при соотношении T : $\mathcal{K} = 1$: 2000 (K_d 0.74 × 10⁴ мл г⁻¹). С учетом термохимических свойств сорбента на основе алюмосиликата лития возможно формирование соединений для эффективного извлечения цезия с последующей термомеханической обработкой сорбента с сорбируемым изотопом.

Кинетика процесса сорбции

На рис. 6 приведены кинетические кривые сорбции ионов Cs^+ алюмосиликатом лития при температурах 30 и 60°С.

Как видно из представленных кинетических кривых, сорбционная емкость достигает максимума в течение 10 мин, возрастая с повышением температуры.

Для описания кинетики топохимических реакций, к которым относятся и исследуемый процесс, использовано уравнение, обоснованное в работе [24]:

$$A_t = A_m k t \frac{1}{1+kt},\tag{7}$$

где k — константа, имеющая размерность (время)⁻¹; t — время сорбции; $A_t u A_m$ — текущее и максимальное значение сорбционной емкости.

Для определения константы k и A_m уравнение (7) преобразовано в уравнение прямой вида (y = a + bx):

Рис. 5. Изотерма сорбции ионов Cs⁺ алюмосиликатом лития.

Таблица 1. Значения сорбционной емкости, степени извлечения α , (%) и K_d ионов цезия при различных значениях T : Ж ($t = 20^{\circ}$ С, исходная концентрация ионов Cs⁺ 3.35 мг/л (25.2 мкмоль/л))

Т:Ж	<i>K_d</i> , мл/г	$A_c \times 10^{-3}$, ммоль/г	α, %
1:40	1215	0.52	96.8
1:100	1457	0.993	93.6
1:400	2550	4.04	86.8
1:1000	1735	12.6	64.6
1:2000	7339	52.3	79.7

$$\frac{1}{A_t} = \frac{1}{A_m} + \frac{1}{ktA_m}, \quad (a = 1/A_m; b = 1/(A_mk)).$$
(8)

Получены линейные уравнения кинетики для различных температур сорбции (рис. 7а, 7б): y = 154.02x + 150.45, $R^2 = 0.8313 (30^{\circ}C)$; y = 227.69x + 108.91, $R^2 = 0.9291 (60^{\circ}C)$, и из уравнений определены значения k, которые равны 0.98 и 0.478 мин⁻¹ для соответствующих температур. Рассчитанные значения максимальной сорбционной емкости A_m составляют 6.65 × 10⁻³ ммоль г⁻¹ для 30°C и 9.2 × 10⁻³ ммоль г⁻¹ для 60°C.

Зная константы процесса сорбции при двух температурах ($K_{t1} = 0.98 \text{ мин}^{-1}$, $K_{t2} = 0.478 \text{ мин}^{-1}$), по уравнению Аррениуса определена энергия активации процесса сорбции данным сорбентом:

$$\ln(K_{t1}/K_{t2}) = (Q/R)(1/T_2 - 1/T_1), \qquad (9)$$

где Q — энергия активации, кДж моль⁻¹, R — газовая постоянная, 8.314 Дж · моль⁻¹ K⁻¹. Энергия активации процесса сорбции, рассчитанная по экспериментальным данным, равна 19.98 кДж моль⁻¹.

Из полученных значений констант $K_{t1} = 0.98 \text{ мин}^{-1}$ (для 30°С) и $K_{t2} = 0.478 \text{ мин}^{-1}$ (для 60°С) и из уравнения (7) следует, что при времени сорбции, равном обратной величине константы ($t = 1/K_t$) сорбционная емкость должна достигать значения, равного 1/2 от максимального значения, но из экспериментальных данных по величине сорбци-

Рис. 6. Кинетические кривые сорбции ионов Cs^+ алюмосиликатом лития: $1 - 30^{\circ}C$ и $2 - 60^{\circ}C$.

онной емкости от времени следует, что уже при минимальном времени сорбции 3 мин сорбционная емкость достигает 70-80% от величины сорбционной емкости, определенной для образца при 20 мин сорбции и принятой за равновесное максимальное значение (рис. 6). Слелано допушение, что за время сорбции в пределах 20 мин при температурах 30 и 60°С устанавливается термодинамическое равновесие, и константы равновесия катионного обмена К_р могут быть определены как отношение равновесной концентрации ионов Cs⁺ при соответствующей температуре (1.19 мг л⁻¹ для 30°С и 0.77 мг л⁻¹ для 60°С) к исходной концентрации, равной 3.35 мг л⁻¹. Получены значения констант: 0.358 и 0.23, соответственно для указанных температур.

Применяя эмпирические закономерности по расчету изменения изобарно-изотермического потенциала ΔG по уравнению Гиббса—Гельм-гольца:

$$\Delta G = \Delta H_T - T \Delta S, \tag{10}$$

и зависимость (Вант–Гоффа) этого потенциала от логарифма константы равновесия:

$$\Delta G = RT \ln K_{p},\tag{11}$$

данные величины констант равновесия для этих температур, представлены в виде зависимости:

$$\ln K_p = -\Delta H_T / TR + \Delta S / R, \qquad (12)$$

Рис. 7. Зависимость обратной величины сорбционной емкости алюмосиликата лития $1/A_t$ от 1/t при различных температурах: (a) 30°C, (б) 60°C.

$t = 30^{\circ}$ С, $A_m = 6.65 \times 10^{-3}$ ммоль г ⁻¹			$t = 60^{\circ}$ С, $A_m = 9.2 \times 10^{-3}$ ммоль г ⁻¹				
<i>t</i> , c	$A_t imes 10^3$, ммоль г ⁻¹	$\sqrt{t}, c^{1/2}$	$\Upsilon_t = A_t / A_m$	<i>t</i> , c	$A_t \times 10^3$, ммоль/г	$\sqrt{t}, c^{1/2}$	$\Upsilon_t = A_t / A_m$
61.2	3.17	7.82	0.499	125	4.58	11.18	0.49
50	2.85	7.07	0.449	100	4.07	10	0.44
25	1.84	5.0	0.289	50	2.61	7.07	0.28
15	1.24	3.87	0.196	30	1.77	5.47	0.19
10	0.89	3.16	0.140	15	0.98	3.87	0.106
3	0.29	1.73	0.046	5	0.35	2.23	0.038
2	0.2	1.41	0.031	1	0.07	1	0.007

Таблица 2. Данные для расчета коэффициента диффузии

получено уравнение y = 1.4332x - 0.0017, из которого следует, что процесс сорбции данным сорбентом в исследуемым диапазоне температур сопровождается незначительным изменением энтропии системы $\Delta S = -0.014$ Дж моль⁻¹ К⁻¹, энтальпии $\Delta H = -11.9$ Дж моль⁻¹ и свободной энергии $\Delta G = -7.28$ Дж моль⁻¹.

Чтобы сделать вывод о диффузионных параметрах процесса сорбции ионов Cs⁺ конкретным наноструктурированным сорбентом, применена методика, расчетные уравнения, приведенные в работе Д.П. Тимофеева [25] для высокодисперсных материалов:

$$\Upsilon_t = \Upsilon_o + (2S/V)(\sqrt{t}\sqrt{D})/\sqrt{\pi}, \qquad (13)$$

где Υ_t , A_t/A_m — относительная величина сорбции; S — удельная поверхность сорбента, см² г⁻¹; V объем образца сорбента, см³ ($V = m/\rho$, где m масса сорбента, г; ρ — плотность сорбента, г см⁻³); t — время, с; D — коэффициент диффузии, см² с⁻¹; π = 3.14.

При использовании данного подхода необходимы экспериментальные данные по значению Υ_t меньше 0.5, но такие значения относительных величин сорбции возможны при временах сорбции $t < 1/K_t$, согласно уравнению (7), и экспериментально их получить затруднительно, но с использованием уравнения (8), значений $A_m =$ = 6.65 × 10⁻³ ммоль г⁻¹, $K_{t1} = 0.98$ мин⁻¹ (для 30°C); и $A_m = 9.2 \times 10^{-3}$ ммоль г⁻¹, $K_{t2} = 0.478$ мин⁻¹ (для 60°C), определенных из экспериментальных данных, расчетным путем получены значения $\Upsilon_t = A_t/A_m$ при временах $t < 1/K_t$ (табл. 2).

По данным, представленным в табл. 2, построены зависимости $\Upsilon_t = f(\sqrt{t})$, приведенные на рис. 8, и получены уравнения прямой y = 0.0736x - 0.0786с $R^2 = 0.99$ и y = 0.0462x - 0.0548 с $R^2 = 0.9769$ для температур 30 и 60°С соответственно. Угловые коэффициенты при *x* в соответствии с уравнением (13) равны: $(2S/V)\sqrt{D}/\sqrt{\pi} = 0.0736$ для 30°С и 0.0462 для температуры 60°С. Все данные для расчета коэффициента диффузии определены: объем сорбента *V* вычислен (m = 0.05 г, плотность равна 2.5 г см⁻³), удельная поверхность составляет 132 м² г⁻¹. Коэффициенты диффузии ионов Cs⁺, рассчитанные по описанной методике, равны 3.81×10^{-16} и 1.53×10^{-16} см² с⁻¹ для температуры 30 и 60°С соответственно.

С учетом исходного и равновесного значения концентрации сорбата в растворе в уравнении (13) может быть учтен коэффициент *N*, равный их отношению $C_{\rm u}/C_{\rm p}$ (3.35 мг л⁻¹ – исходная концентрация, 1.18 мг л⁻¹ – равновесная при 30°С и 0.766 мг л⁻¹ – при 60°С):

$$\Upsilon_t = \Upsilon_o + (2S/V)N(\sqrt{t}\sqrt{D})/\sqrt{\pi}, \qquad (14)$$

тогда коэффициенты диффузии равны 0.5×10^{-16} и 0.1×10^{-16} см² с⁻¹, соответственно для указанных температур. Если учесть, что экспериментальные данные по сорбции и кинетике определены с

Рис. 8. Зависимость относительной величины сорбции от \sqrt{t} : (а) при 30°С, (б) при 60°С.

ошибкой не менее 10–15%, то полученные расчетные данные по коэффициентам диффузии следует рассматривать как ориентировочные и для их сравнительного анализа необходимы подобные данные для других сорбентов подобного состава, структуры и морфологии.

выводы

Синтезирован рентгеноаморфный наноструктурированный алюмосиликат лития с удельной поверхностью 132 м² г^{−1}. На основании использованных в исследовании методов рассчитана брутто формула полученного соединения: Li_{0.63}H_{0.27}Al_{0.9}Si_{2.7}O₈·4.7H₂O. Исследована морфология полученного соединения, влияние температуры на его нанотекстуру, установлено образование нанопор после прогрева образца до 900-1000°С. Исследованы сорбционные свойства при сорбции ионов Cs⁺ в статических условиях из растворов без солевого фона. По величине максимальной сорбционной емкости по отношению к ионам Cs^+ (4.7 ммоль г⁻¹) алюмосиликат лития превосходит многие природные и синтетические сорбенты, но для полной характеристики сорбента запланировано дополнительно провести исследование по влиянию на сорбционные свойства солевого фона, рН раствора и температуры обжига алюмосиликата. Рассчитана энергия активации процесса сорбции, коэффициенты диффузии ионов Cs^+ при температурах 30 и 60°С.

Исследование выполнено в рамках государственного задания Института химии ДВО РАН, № FWFN (0205)-2022-0002, тема 2, раздел 3.

Регистрационный номер темы в Плане Научного совета РАН по физической химии (секция "Адсорбционные явления") – 22-03-460-05. Анализ методом масс-спектрометрии с индуктивно связанной плазмой выполнен на оборудовании ЦКП Приморский центр локального, элементно-го и изотопного анализа ДВГИ ДВО РАН, элементный и рентгенофазовый анализ выполнен на оборудовании ЦКП Дальневосточный центр структурных исследований ИХ ДВО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Khaleque A., Alam M.M., Hoque M. et al. // Environmental Advances. 2020. V. 2. P. 100019. https://doi.org/10.1016/j.envadv.2020.100019
- 2. *Bhatnagar A., Minocha A.K.* // Indian J. Chemical Technology. 2006. V. 13. P. 203–217.
- 3. Orlova A.I., Ojovan M.I. // Materials. 2019. V. 12. P. 2638. https://doi.org/10.3390/ma12162638
- Милютин В.В., Некрасова Н.А., Каптаков В.О. // Радиоактивные отходы. 2020. № 4(13). С. 80-89. https://doi.org/10.25283/2587-9707-2020-4-80-89
- Kwong-Moses D.S., Elliott W.C., Wampler J.M. et al. // J. Environmental Radioactivity. 2020. V. 211. P. 106074. https://doi.org/10.1016/j.jenvrad.2019.106074

- Voronina A.V., Noskova A.Yu, Semenishchev V.S., Gupta D.K. // J. Environmental Radioactivity. 2020. V. 217. P. 106210. https://doi.org/10.1016/j.jenvrad.2020.106210
- Rad L.R., Anbia M. // J. Environmental Chemical Engineering. 2021. V. 9. P. 106088. https://doi.org/10.1016/j.jece.2021.106088
- Abdollahi T., Towfighi J., Rezaei-Vahidian H. // Environmental Technology & Innovation. 2020. V. 17. 100592. https://doi.org/10.1016/j.eti.2019.100592
- Belousov P., Semenkova A., Egorova T. et al. // Minerals. 2019. 9.625. https://doi.org/10.3390/min9100625
- 10. Гордиенко П.С., Ярусова С.Б., Шабалин И.А. и др. // Радиохимия. 2014. Т. 56. № 6. С. 518–523.
- Гордиенко П.С., Шабалин И.А., Супонина А.П. и др. // Журн. неорганической химии. 2016. Т. 61. № 8. С. 993–1000. https://doi.org/10.7868/S0044457X16080092
- Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. физической химии. 2016. Т. 90. № 10. С. 1534—1541. https://doi.org/10.7868/S0044453716100125
- Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Химическая технология. 2017. Т. 18. № 1. С. 2–8.
- Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. неорганической химии. 2019. Т. 64. № 12. С. 1326–1334. https://doi.org/10.1134/S0044457X19120055
- 15. Ярусова С.Б., Гордиенко П.С., Шичалин О.О. и др. // Журн. неорганической химии. 2022. Т. 67. № 9. С. 1251–1257. https://doi.org/10.31857/S0044457X22090197
- Гордиенко П.С., Ярусова С.Б., Шабалин И.А. и др. // Журн. неорганической химии. 2022. Т. 67. № 9. С. 1258–1265. https://doi.org/10.1134/S0036023622090042
- Yarusova S.B., Shichalin O.O., Belov A.A. et al. // Ceramics International. 2022. V. 48. P. 3808–3817. https://doi.org/10.1016/j.ceramint.2021.10.164
- Panasenko A.E., Shichalin O.O., Yarusova S.B. et al. // Nuclear Engineering and Technology. 2022. V. 54. P. 3250–3259. https://doi.org/10.1016/j.net.2022.04.005
- Haisheng Hu, Jintao Guo, Meitang Liu et al. // Hydrometallurgy. 2022. V. 213. P. 105929. https://doi.org/10.1016/j.hydromet.2022.105929
- Helsch G., Deubener J., Rampf M. et al. // J. Non-Crystalline Solids. 2018. V. 492. P. 130–139. https://doi.org/10.1016/j.jnoncrysol.2018.04.031
- Weihong Zheng, Zipeng Gao, Meng Huang et al. // J. Non-Crystalline Solids. 2022. V. 598. P. 121940. https://doi.org/10.1016/j.jnoncrysol.2022.121940
- Bejarano-Peña W.-D., Alcántar-Vázquez B., Ramírez-Zamora R.-M. // Materials Research Bulletin. 2021. V. 141. P. 111353. https://doi.org/10.1016/j.materresbull.2021.111353
- Qi Zhang, Xiaoli Liang, Dong Peng, Xuedong Zhu // Thermochimica Acta. 2018. V. 669. P. 80–87. https://doi.org/10.1016/j.tca.2018.09.002
- 24. Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. физической химии. 2019. Т. 93. № 11. С. 1724–1730.

https://doi.org/10.1134/S0044453719110128

25. *Тимофеев Д.П.* Кинетика адсорбции. М.: Изд. Академия наук СССР, 1962. 250 с.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 59 № 5 2023