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Abstract The study is aimed on modifying a decision tree (DT) for predicting adverse events in clinical medicine by
including risk factors (RF) in its structure, identified using multi-level categorization of predictors.
A retrospective cohort study was conducted using data from 4,673 electronic medical records of patients
with a diagnosis of ST-segment elevation myocardial infarction (STEMI) who underwent percutaneous
coronary intervention (PCI). Patients were divided into two groups; the first group consisted of 318 (6.8%)
patients who died in the hospital, the second group included 4,359 (93.2%) patients with a favorable



outcome of PCI. DT method and multimetric categorization of predictors were used to create prognostic
models for in-hospital mortality (IHM). The performance of the models was assessed using 6 quality
metrics. The study endpoint was the all-cause IHM in patients with STEMI after PCI.
A modified DT method has been developed on the basis of multi-level categorization of predictors and
identification of RF for IHM. A comparative analysis of the quality of models based on the CART and
modified DT algorithms showed higher performance of the second (AUC 0.813 vs 0.765, p-value = 0.003).
The advantage of this method is the ability to extract production rules that ensure transparency of the
generated predictive solutions.
Conclusions. A model based on a modified DT algorithm is an effective prognostic tool allowing high
performance estimation of IHM probability and clinical interpretation of the prognostic results.
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Abstract. The study is aimed on modifying a decision tree (DT) for predicting
adverse events in clinical medicine by including risk factors (RF) in its structure,
identified using multi-level categorization of predictors.

A retrospective cohort study was conducted using data from 4,673 electronic
medical records of patients with a diagnosis of ST-segment elevation myocardial
infarction (STEMI) who underwent percutaneous coronary intervention (PCI).AQ1

Patients were divided into two groups; the first group consisted of 318 (6.8%)
patients who died in the hospital, the second group included 4,359 (93.2%) patients
with a favorable outcome of PCI. DT method and multimetric categorization of
predictors were used to create prognostic models for in-hospital mortality (IHM).
The performance of the models was assessed using 6 quality metrics. The study
endpoint was the all-cause IHM in patients with STEMI after PCI.

A modified DT method has been developed on the basis of multi-level cate-
gorization of predictors and identification of RF for IHM. A comparative analysis
of the quality of models based on the CART and modified DT algorithms showed
higher performance of the second (AUC 0.813 vs 0.765, p-value = 0.003). The
advantage of this method is the ability to extract production rules that ensure
transparency of the generated predictive solutions.

Conclusions. A model based on a modified DT algorithm is an effective prog-
nostic tool allowing high performance estimation of IHM probability and clinical
interpretation of the prognostic results.

Keywords: decision tree · risk factors · categorizing continuous variables ·
Shapley additive explanation (SHAP) · explainable artificial intelligence (XAI)

1 Introduction

Ischemic heart disease (IHD) leads in the mortality structure of the population from
cardiovascular diseases [14]. Among the most dangerous clinical types of IHD is acute
myocardial infarction with ST segment elevation on the electrocardiogram (STEMI).
One of the effective methods for treating STEMI is myocardial revascularization using
percutaneous coronary intervention (PCI) [4]. Despite the improvement of PCI tech-
nologies, in-hospital mortality (IHM) after its performance for emergency indications
remains high, ranging from 4 to 7%, highlighting the need for predicting adverse events
[11].
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2 K. I. Shakhgeldyan et al.

Traditionally, prognostic scales are used to assess IHM risks, the performance of
which is often insufficient for making necessary decisions to reduce the risks of adverse
outcomes. Improving the quality of prognosis can be achieved by applying machine
learning (ML) methods and developing prognostic models based on them that take
into account nonlinear relationships between predictors and the endpoint. However,
the widespread implementation of ML models in clinical practice is limited by the
complexity of interpreting the generated conclusions. Algorithms of explainable artificial
intelligence (XAI) are promising tools to solve this problem.

Decision trees (DT) are one of the popular XAI methods used to develop prognostic
models [8]. The essence of the method lies in constructing an acyclic tree-like graph, and
its strength is the interpretability of the conclusions generated by the model. It is impor-
tant to note that DTs tend to overfit and lose the advantage of forecast interpretability
as the number of predictors used increases. This is primarily because popular DT con-
struction methods such as Classification and Regression Trees (CART) are “greedy”
algorithms that form data splitting rules independently of each other [1]. Research
aimed at modifying DTs addresses these issues by various methods: finding and exclud-
ing insignificant predictors [7], using the “African Buffalo Optimization” method [10],
applying mixed integer linear programming methods [1], regularization, and pruning of
DTs [5]. Nevertheless, the direction aimed at improving the quality and interpretability
of forecasts using DTs remains relevant and is the subject of active discussion.

This study proposes a new approach to improve the performance of prognostic mod-
els based on DTs by using multi-level categorization of predictors. Its implementation
involves identifying risk factors for adverse outcomes, which are subsequently used as
predictors in the DT model.

The aim of the study is to modify DTs for predicting adverse events in clini-
cal medicine by including risk factors obtained through multi-level categorization of
predictors in its structure.

2 Methods

The modification of DT was based on the results of previously conducted studies in
which predictors of IHM were identified and validated [13]. In the present study, the DT
modification algorithm consisted of two main stages:

1) determination of IHM risk factors by multi-level categorization of previously selected
predictors;

2) development of the DT model in which only the risk factors are used in data splitting.

These stages are presented in Sects. 2.1 and 2.2. The data and methods related to the
validation of the new approach in the prognostic model of IHM in patients with STEMI
are presented in Sects. 2.3 and 2.4.

2.1 Identification of Risk Factors

In the first stage of the study, risk factors (RF) are determined by categorizing continuous
predictors of adverse events. The goal of this stage is to identify threshold values of
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Decision Tree Modification 3

predictors that provide the best data separation between the IHM group and patients
with favorable outcomes of cardiovascular disease. Identifying binary risk factors allows
for the identification of patients at high or low risk of IHM. Unique variable values
were considered as potential thresholds, and four methods were used to assess their
prognostic abilities: the minimum p-value – Min(p-value), determined using the χ2 test,
the maximum area under the ROC curve (AUC) – Max(AUC) in the single-factor logistic
regression model, the equidistant distance between the centroids of comparison groups
[15], analysis of SHAP values obtained on the basis of the principles of operation of
a single-factor stochastic gradient boosting (SGB) model [6]. It is worth noting that
potential risk factors of adverse outcomes included both values greater than and less
than the threshold value.

Since SHAP values reflect the degree of influence of a predictor on the decisions
made by the forecasting model, analyzing the curve formed by them allows for assessing
the dependence of the resulting variable on the predictor’s influence. The process of
analyzing such a curve (Fig. 1) is associated with the search for points of interest:
inflection and intersection of the SHAP graph with the x-axis.

Fig. 1. Example of graph with SHAP values.

The analysis algorithm consists of the following steps: averaging SHAP values for
each unique variable value; smoothing the obtained one-dimensional array using a Gaus-
sian filter [3]; finding points of intersection of the obtained graph with the x-axis; finding
inflection points of the resulting curve.

To find inflection points, the gradient was calculated for each known point on the
obtained graph. Since the available data do not cover the entire possible range of predictor
values, inflection points were considered not only where the gradient was equal to 0, but
also the average values of neighboring points with different signs.

2.2 Development of Decision Tree Models

The process of building decision trees involves a recursive algorithm for dividing a
dataset using the most optimal rules. The algorithm proposed in the study is similar to
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4 K. I. Shakhgeldyan et al.

well-established methods such as ID3, C4.5, or CART [12]. These methods split the data
by selecting the best cut-off thresholds and recursively build a decision tree to maximize
information gain. A modification in the developed decision tree model is that the search
for thresholds during data partitioning is done not based on unique variable values, but
from a list of previously identified important features.

To determine the optimal rule, the information gain criterion (entropy criterion) (1)
[12] and the Gini index (2) [2] are used, which evaluate the quality of data separation
considering both classes.

Gain
(

A‘
)

= −
∑n

j=1
Pj(A)∗ log

(
Pj(A)

) +
∑n

j=1
Pj

(
A‘

)
∗ log

(
Pj

(
A‘

))
, (1)

where Pj – probability of the i-class in the dataset; A‘ – subset of data obtained using
the rule; A – total dataset; n – number of predicted classes.

Gini
(

A‘
)

= 1 −
n∑

j=1

Pj

(
A‘

)2
, (2)

where Pj – probability of i-class in dataset; A‘ – subset of data obtained using the rule;
A – total dataset; n – number of predicted classes.

Due to the fact that in the process of building the tree, when the data is split at a node,
2 subsets are formed, it is necessary to average the quality metrics taking into account
the scale of the subsets:

Mean
(

Met
(

A‘
))

=
(

len
(

A‘
t

)/
len(A) ∗ Met

(
A‘

t

)
+ len

(
A‘

f

)/
len(A) ∗ Met

(
A‘

f

))/
2 ,

(3)

where len – number of records in dataset; A‘
t – subset of data satisfying the rule; A‘

f –
subset of data not satisfying the rule; A – total dataset; Met – quality metric for dividing
the dataset.

Simplified versions of these characteristics are also proposed, which consider only
one of the classes. In this case, the information gain criterion will correspond to formula
(3), and the Gini index will correspond to formula (4).

Gain
(

A‘
)

= −Pj(A) ∗ log
(
Pj(A)

) + Pj

(
A‘

)
∗ log

(
Pj

(
A‘

))
, (4)

where Pj – probability of i-class in dataset; A‘ – subset of data obtained using the rule;
A – total dataset.

Gini
(

A‘
)

= 1 − Pj

(
A‘

)2
, (5)

where Pj – probability of i-class in dataset; A‘ – subset of data obtained using the rule;
A – total dataset.
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Decision Tree Modification 5

2.3 Machine Learning

Training, cross-validation, and final model testing were performed according to the fol-
lowing algorithm. The predictors used in the model were features that were selected and
validated by the authors earlier in the development of the predictive model of in-hospital
mortality in patients with STEMI after PCI [13]. The dataset was divided into 2 sam-
ples: for training and cross-validation (80%) and for final testing (20%). The training and
cross-validation procedure was conducted using the stratified k-Folders method with 10
samples. Averaged quality metrics were used: AUC, sensitivity (Sen), specificity (Spec),
F1-score, positive predictive value (PPV), negative predictive value (NPV). The AUC
metric was applied for selecting the best model, feature selection, and hyperparameter
tuning. The cutoff threshold for calculating Sen and Spec was determined by finding a
balance between them. For the final testing, the best models with optimal parameters
and hyperparameters were trained on 80% and tested on a subset for final testing. To
provide a confidence estimate for the quality metrics, the procedure was repeated 50
times, initially randomizing the split.

Data analysis and model building were conducted in Python with open-source code,
version 3.9.16.

2.4 Data Collecting

A single-center retrospective cohort study was conducted, during which data from the
medical records of patients treated at the Regional Vascular Center of “Primorsky Krai
Clinical Hospital No. 1” in Vladivostok from 2015 to 2021 were analyzed. The Ethical
Committee of the School of Medicine of the Far Eastern Federal University supported
the study. The study included the medical histories of 4,673 patients who underwent
invasive coronary angiography with subsequent transluminal balloon angioplasty with
stenting of infarct-related arteries within the first day of hospitalization. 30-day in-
hospital mortality (IHM) after PCI was recorded in 318 (6.8%) patients. The results
of IHM predictors analysis are presented in Table 1. In addition to demographic data
(Age), clinical blood analysis parameters were analyzed: the relative number of neu-
trophils (NEUT), eosinophils (EOS), and the plateletcrit (PCT), as well as the levels of
creatinine (Cr) and glucose (Glu) in the blood serum. Furthermore, the model included
postoperative echocardiographic parameters – left ventricular ejection fraction (EF), and
objective assessment results: heart rate (HR), systolic blood pressure (SBP), and Killip
class of acute heart failure.

The study endpoint was the occurrence of IHM for all causes represented as a
categorical binary feature (“absence” or “development”).

3 Results

3.1 Final Included Cohort

The study included 4,673 patients aged 26 to 93 years with a median age of 63 years
and a 95% confidence interval [62; 63], of whom 318 (6.8%) died within 30 days after
PCI. The majority (90%) of fatal outcomes occurred within the first 7 days after the
operation, 6% died between days 10 and 20, and 4% between days 20 and 30.
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6 K. I. Shakhgeldyan et al.

Intergroup analysis of demographic, clinical, laboratory, and instrumental parameters
demonstrated that most of them have statistically significant differences (Table 1).

Table 1. Baseline characteristics of study population

Predictor Group 1 (n = 318) Group 2 (n =
4357)

OR [(95%) CI] p-value

Female, n (%) 142 (44.65) 1332 (30.5) 1.8 [1.5; 2.3] < 0.000001

Age (y) 71 (63; 78) 62 (55; 69) - < 0.000001

SBP (mmHg) 110 (90; 130) 130 (120; 150) - < 0.000001

HR (bpm) 86 (72; 100) 72 (65; 80) - < 0.000001

Cr (umol/l) 130 (96; 193.3) 97 (81; 114.8) - < 0.000001

Killip class, n(%)
III-IV

189 (59.4) 748 (17.2) 7.1 [5.6; 9] < 0.000001

LVEF (%) 46.5 (38; 54.8) 56 (50; 61) - < 0.000001

NEUT (%) 81.3 (75.75; 86.5) 66.7 (59.1;
74.9)

- < 0.0001

PCT (%) 0.22 (0.17; 0.28) 0.2 (0.16; 0.24) - 0.0012

EOS (%) 0.1 (0.00; 0.3) 0.9 (0.3; 1.9) - < 0.000001

Glu (mmol/l) 7.9 (6.3; 10.31) 5.8 (5.1; 7) - < 0.000001

Abbreviations: LVEF – left ventricle ejection fraction; Glu – serum glucose; SBP – systolic blood
pressure; HR – heart rate; Cr – serum creatinine; PCT – plateletcrit; NEUT – neutrophil count in
%; EOS – eosinophil count in %.

Among the deceased, older individuals and females predominated (OR = 1.8, p-
value < 0.00001). The presence of Killip class 3 and 4 was characteristic for the first
group of patients (OR = 7.1), with lower values of systolic blood pressure (SBP) and
left ventricular ejection fraction (LVEF), an increase in heart rate (HR), higher levels of
creatinine (Cr), neutrophils (NEUT), eosinophils (ESO), and plateletcrit (PCT).

3.2 Training and Validation of Models

Based on predictors such as age, SBP, HR, Killip class, LVEF, Cr, NEUT, EOS, PCT
and Glu prognostic models were developed, and the quality indicators are presented in
Table 2. The “PyEntropy” and “PyGini” algorithms were developed based on decision
trees using information entropy and Gini coefficient metrics, respectively. To build the
remaining models, the modified decision tree method proposed by the authors of this
study was applied.

The analysis showed that the model developed using the modified decision tree
method, utilizing the Gain metric and considering only data from patients with favorable
treatment outcomes, has the highest predictive potential (AUC – 0.813). Models that only
consider data from patients with unfavorable outcomes or include information from both
classes of patients have lower predictive potential (AUC – 0.799).
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Decision Tree Modification 7

Table 2. Evaluation of the performance of prognostic IHM models.

Model AUC Se Sp PPV NPV F1

PyGini 0.765 [0.730;
0.800]

0.726 [0.696;
0.76]

0.737 [0.713;
0.76]

0.167 [0.16;
0.174]

0.726
[0.696; 0.76]

0.272 [0.263;
0.28]

PyEntropy 0.733 [0.699;
0.767]

0.700 [0.651;
0.75]

0.695 [0.655;
0.74]

0.080
[0.068; 0.09]

0.700
[0.651; 0.75]

0.144 [0.125;
0.16]

Gini total 0.741 [0.701;
0.781]

0.727 [0.695;
0.76]

0.717 [0.675;
0.76]

0.157
[0.144; 0.17]

0.727
[0.695; 0.76]

0.258
[0.244;0.27]

Gini 0 0.780 [0.754;
0.807]

0.750 [0.725;
0.78]

0.760 [0.731;
0.79]

0.107
[0.096; 0.12]

0.747
[0.722; 0.77]

0.187 [0.168;
0.20]

Gini 1 0.764 [0.737;
0.791]

0.726 [0.696;
0.76]

0.737 [0.713;
0.76]

0.167 [0.16;
0.174]

0.726
[0.696; 0.78]

0.272 [0.263;
0.28]

Gain total 0.799 [0.777;
0.820]

0.778 [0.753;
0.80]

0.756 [0.741;
0.77]

0.104 [0.09;
0.116]

0.778
[0.753; 0.80]

0.184 [0.168;
0.20]

Gain 0 0.813 [0.795;
0.831]

0.778 [0.758;
0.78]

0.806 [0.793;
0.82]

0.127 [0.12;
0.137]

0.778 [0.76;
0.797]

0.219 [0.205;
0.23]

Gain 1 0.799
[0.775;0.823]

0.778
[0.753;0.80]

0.756
[0.741;0.77]

0.104
[0.093;0.12]

0.778
[0.753;0.80]

0.184
[0.168;0.20]

Comparative analysis of statistically significant differences in the prognostic per-
formance of models based on the modified decision tree, “PyEntropy,” and “PyGini”
indicates pvalues ranging from 0.001 to 0.026 (Table 3).

Table 3. Evaluation of statistical differences in the AUC metric of the analyzed models.

PyEntropy PyGini Gain total Gain 0 Gain 1 Gini total Gini 0 Gini 1

PyEntropy 1.000 0.6223 0.007 0.001 0.009 0.511 0.088 0.115

PyGini - 1.000 0.026 0.003 0.022 0.293 0.237 0.293

Gain total - - 1.000 0.237 0.792 0.003 0.043 0.048

Gain 0 - - - 1.000 0.325 0.0002 0.033 0.036

Gain 1 - - - - 1.000 0.003 0.043 0.047

Gini total - - - - - 1.000 0.022 0.026

Gini 0 - - - - - - 1.000 0.921

Gini 1 - - - - - - - 1.000

Models developed using the authors’ proposed algorithm but using the Gini metric
do not differ from models obtained using existing solutions like PyEntropy and PyGini
(p-values range from 0.088 to 0.511). The ROC curve also demonstrates the higher
quality of the model developed based on the modified DT, utilizing the Gain metric and
considering only data from patients with favorable outcomes of PCI.
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8 K. I. Shakhgeldyan et al.

During cross-validation process it was determined that modified DT algorithm allows
to construct small sized trees compared to CART: 13 [12; 14] vs 17 [17; 18] leaves,
respectively. The statistical significance of these differences is indicated by p-value <

0.000001. The smaller resulting trees size is proposed as algorithm advantage, because
of production rules extraction simplification. DT cutoff thresholds were determined
before their construction utilizing p-value minimization, AUC maximization, compar-
ison groups centrolides equidistant distance calculation and based on GBS models
shap-values analysis.

Model analysis (Fig. 2), developed by modified DT method, allows us to identify 6
RF production rules (Table 4).

Fig. 2. Structure of decision tree

Patient classification was performed by 0.0543 threshold probability cutoff to balance
sensitivity and specificity. The model is an unbalanced tree, which in some cases allow to
predict IHM by partly predictors utilization. For example, if the patient’s blood creatinine
level is above 195 umol/l, the model will not use other parameters.

Patient classification is performed using a probability threshold of 0.0543, providing
a balance between sensitivity and specificity.
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Decision Tree Modification 9

Table 4. Ranking the production rules of IHM risk factors after PCI in patients with STEMI

№ Production rules of risk factors ОR [95% CI] Probability

1 Cr ≥ 195 umol/l 13.34 [9.5; 18.6] 38.4%

2 NEUT ≥ 75.5% and Glu ≥ 8.15 mmol/l 10.82 [7.74; 15.12] 23.3%

3 LVEF < 37% 10.75 [7.2; 16.06] 26.8%

4 NEUT ≥ 75.5% and Killip ≥ 3 8.48 [6.21; 11.55] 23.6%

5 NEUT ≥ 75.5% and HR > 82 bpm 7.61 [5.67; 10.22 23.5%

6 EOS < 0.25% and Age > 70 years 5.34 [3.95; 7.22] 19.5%

4 Discussion

Despite the fact that machine learning methods demonstrate high performance in solv-
ing tasks of predicting adverse events, their application in clinical practice is currently
limited. The main obstacle to their more active implementation is the opacity of ML
models, and therefore, the mistrust of doctors towards the conclusions they generate.
Among the methods that allow explaining the predicted probability of developing an
adverse event, the most well-known is the decision tree, the main drawback of which is
associated with insufficient forecast performance. Among the promising technologies
of explainable artificial intelligence, the Shapley additive explanation method can be
highlighted, with the help of which it becomes possible not only to assess the degree of
influence of predictors on the final outcome but also to identify their threshold values that
have the highest predictive value. The combination of these methods allows for the mod-
ification of decision trees, providing transparency on one hand in the decision-making
process, and on the other hand, high model efficiency, which is explained by the use of
knowledge extracted from clinical data in the process of identifying risk factors. The
process of gaining knowledge involves searching for optimal values based on minimiz-
ing or maximizing target functions Min(p-value) and Max(AUC), as well as analyzing
the shap-value of a single-factor model of stochastic gradient boosting. Assessing the
dynamics of changes in shap-values allows explaining the relationship between different
predictor values and the final study endpoint, which is the basis for using this method
in multi-level categorization procedures. The set of risk factors thus formed, taking into
account the context of the problem being addressed, allows avoiding overfitting and the
algorithm thinning process of decision trees. At the same time, it is still possible to apply
structural constraints to the developed model [9].

The dataset used for the validation of the modified decision tree was significantly
unbalanced. As a result, the best results were achieved when using Gain index of 0,
allowing for the exclusion of a large number of objects in the sample belonging to
the majority class. It can be assumed that with a balanced dataset, the more effective
prognostic tool will be a model based on the modified decision tree with the characteristic
of “Gain total”.

In the present study, the model with the best quality metrics was developed based
on the modified decision tree proposed by the authors and the Gain metric, considering
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10 K. I. Shakhgeldyan et al.

only the majority class. A comparison of this model with models based on the CART
method implemented in the DecisionTreeClassifier class in the sklearn module shows
the superiority of the proposed solution (AUC 0.813 vs 0.765) in conditions of class
imbalance.

An important advantage of the modified decision tree is the ability to interpret the
forecast by extracting production rules (Table 4). This allows determining the degree of
risk of in-hospital mortality and making necessary decisions to limit it. For example,
with a blood Cr concentration exceeding 195 umol/l, the odds of adverse outcomes
increase by 13.3 times, which is due to progressive renal insufficiency. For patients with
a NEUT blood level exceeding 75% and Glu concentration exceeding 8.15 mmol/l, the
odds of in-hospital mortality increase by 10.8 times, due to pronounced inflammatory
reactions and carbohydrate metabolism disorders. Other examples of production rules
characterizing patients at high risk of in-hospital mortality include LVEF less than 37%
and a combination of NEUT blood content over 75% with Killip class 3 or 4 indicating
severe heart failure.

5 Conclusion

In the present study presents the modified DR method developed by the authors. The
method is based on replacing the threshold values determined during the construction
of the DR with the FR obtained by the methods of Shapley’s additive explanation,
minimizing p-value, maximizing AUC and calculating the equidistant distance between
the centroids of features in comparison groups. The modified DR was tested on a dataset
of patients with STEMI after PCI. Predictive models based on it demonstrated higher
accuracy compared to the CART method (AUC 0.813 vs 0.765). The modified DR allows
you to build trees of a smaller size than CART (the number of leaves is 13 vs 17), which
simplifies the extraction of production rules that provide interpretation of forecast results.
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