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A B S T R A C T

In this study, an attempt was made to sequentially calculate the Curie temperature of iron-containing alloys
based on the theory of random fields of exchange interaction. This method makes it possible to determine
the conditions for the occurrence of ferromagnetism in an amorphous alloy depending on the concentration
of exchange-interacting ions, their Holschmidt radius, and the type of crystal lattice of the transition metal.
1. Introduction

In recent years, in condensed matter physics, a research direction
related to the production of amorphous metal alloys, whose 70%− 85%
of composition contains a transition metal and 15%−30% has metalloid,
has received a significant development. Among such materials, amor-
phous alloys based on iron and cobalt are the most promising in terms
of practical use and studying the structural features of an amorphous
condensed state. The structure of such alloys is characterized by the
absence of a strict periodicity inherent in the crystalline structure in
the arrangement of atoms, ions, and molecules. The absence of long-
range ordering in the arrangement of atoms leads to the realization of
a set of physical properties that cannot be obtained in a solid state with
a crystalline structure [1–3].

The first amorphous or glassy alloy Au80Si20, quenched directly from
the melt, was obtained by a group of scientists led by Professor P.
Duwez in 1960 [4]. It was not stable at room temperature and therefore
not suitable for future research. For the next decade there was no
progress in this area [5], except for another work by P. Duwez [6]
on the preparation and study of the Pd-Si alloy. The main results of
the experiment were as follows: (1) the obtained amorphous Pd-Si
system is stable at room temperature; the crystallization temperature
is about 400; (2) Pd is a transition metal and can be replaced with
any other transition metal. The emergence of methods for obtaining
continuous amorphous ribbons (in the 1970s, prior to that only small
amorphous plates could be obtained [5]) and the possibility of their
application to many systems of metal alloys [7] provoked great interest
from various scientific groups. The development of rapid solidification
technology [8,9] has introduced a rich spectrum of alloys with out-
standing properties. Their lasting scientific and technological impact

∗ Corresponding author.
E-mail addresses: belokon.vi@dvfu.ru (V. Belokon), lapenkov.rv@dvfu.ruu (R. Lapenkov), dyachenko.oi@dvfu.ru (O. Dyachenko).

can be assessed by the constant influx of scientific research devoted to
fundamental questions, discovery of new materials, and improvement
of technological processes. To date, the achievements of the rapid
quenching process include the following: obtaining thin magnetically
soft amorphous ribbons, preparing and manufacturing precursors for
nanocrystalline alloys, and creating bulk amorphous alloys.

Despite many publications on the research topic [10,11], there are
gaps in the explanation of some magnetic properties of amorphous
metal alloys, including the behaviour of the Curie point depending on
the concentration and type of metalloids. From general considerations,
the Curie point of an amorphous iron-based alloy should be lower than
that of a crystalline analogue since the number of neighbours in the first
and second coordination spheres, which make the main contribution to
the field of exchange interaction in the bcc lattice, is greater than in
objects with random close packing, for which the average coordination
number is 𝑧 ≈ 12 [1]. In this study, an attempt was made to sequentially
calculate the Curie temperature of iron-containing alloys based on the
theory of random fields of exchange interaction [12,13].

We considered the magnetic properties of amorphous alloys based
on the following assumptions:

1. For crystalline iron, the field of exchange interaction was created
by ions of the first and second coordination spheres. The ex-
change integrals were determined using the Bethe–Slater curve.
The action of the remaining ions was screened by the nearest
ones and was not considered.

2. Ions of the first and second coordination spheres in amorphous
iron were arranged randomly and occupied a volume determined
by their average density.
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2. Distribution density of interaction fields

Following [14] we considered a system of interacting particles
randomly distributed over the volume. The projection of the field 𝐻𝑖
n the 𝑧 axis (the axis of symmetry in the Ising model), created at the
rigin by one arbitrary particle located at a point with coordinate 𝑟𝑖

with a magnetic moment 𝐦𝑖, can be determined by means the law:

𝐻𝑖 = 𝜑
(

𝑟𝑖,𝐦𝑖
)

. (1)

Given the known distribution of particles over 𝑟𝑖 and 𝐦𝑖, the distri-
bution density of the interaction field on a particle located at the origin
of coordinates is a 𝛿-function of the form:

𝛿

[

𝐻𝑖 −
∑

𝑖
𝜑
(

𝑟𝑖,𝐦𝑖
)

]

(2)

In turn, the density of the random distribution of particles over the
volume 𝑉 is determined as follows:
d 𝑉1
𝑉

⋅
d 𝑉2

(

𝑉 − 𝑉0
) ⋅… ⋅

d 𝑉𝑁
(

1 −𝑁𝑉 0
) =

= 1

𝑉 𝑁
(

1 − 𝑉0
𝑉

)(

1 − 2𝑉 0
𝑉

)

…
(

1 − 𝑁𝑉 0
𝑉

) =

= 1

𝑉 𝑁
(

1 − 𝑉0
𝑉 − 2𝑉 0

𝑉 …− 𝑁𝑉 0
𝑉

) =

1

𝑉 𝑁
(

1 − 𝑉0
𝑉 (1 + 2… +𝑁)

) = 1

𝑉 𝑁
(

1 − 𝑁2

2
𝑉0
𝑉

) =

= 1
𝑉 𝑁

(

1 + 𝑁2

2
𝑉0
𝑉

)

= 1
𝑉 𝑁

(

1 + 𝑁
2

𝑉0
𝑉

)𝑁
= 1

𝑣𝑁
,

(3)

where the relation (d𝑉(𝑖+1)∕𝑉𝑖) is the probability of the particle, with
umber (𝑖 + 1) located in the volume element d 𝑉𝑖+1 at the point with
oordinate 𝐫𝑖+1. Magnitude 𝑉0 is own volume particles. The value 𝑉
etermines the volume of the sample. Magnitude 𝑁 is the number of
articles. Here, it is considered that (𝑁𝑉 0∕𝑉 ) ≪ 1.

The distribution of particles over magnetic moments is determined
by the relation ∏𝑁

𝑖=1 𝜏
(

𝐦𝑖
)

d 𝐦𝑖. Here, 𝜏
(

𝐦𝑖
)

is the distribution density
of particles according to the value 𝑚𝑖 and the direction of the magnetic
moment 𝐦𝑖. In the Ising model, there can be only two directions of the
magnetic moment 𝐦𝑖 ∶ 𝜗 = 0, 𝜗 = 𝜋, where the angle 𝜗 determines the
orientation of 𝐦𝑖 with respect to the 𝑧 axis. The distribution over the
angles 𝜑 is uniform with a density of 1∕(2𝜋). Accordingly, 𝜏

(

𝐦𝑖
)

can
be written as follows:

𝜏
(

𝐦𝑖
)

= 1
𝑚2
𝑖

𝛿
(

𝑚𝑖−𝑚0
) 1
sin 𝜗

[

𝛼𝑖𝛿 (𝜗) +𝛽𝑖𝛿 (𝜗−𝜋)
] 1
2𝜋

, (4)

∫ 𝜏
(

𝐦𝑖
)

𝑚2
𝑖 d𝑚𝑖 sin 𝜗𝑖d𝑉𝑖d𝜑 = 1, (5)

where 𝛼𝑖 is relative probability of upward direction of the magnetic
moment, 𝛽𝑖 is relative probability of downward direction of the mag-
netic moment, magnitude 𝑚0 is the magnetic moment per particle,
𝛼𝑖 + 𝛽𝑖 = 1.

In the field 𝐻𝑖, the equilibrium values 𝛼𝑖 and 𝛽𝑖 are defined as
ollows:

𝑖 =
exp

(

𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

)

exp
(

𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

)

+ exp
(

−𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

) , (6)

𝑖 =
exp

(

−𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

)

exp
(

𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

)

+ exp
(

−𝑚𝑖𝐻𝑖
𝑘𝐵𝑇

) . (7)

here magnitude 𝑘𝐵 is the Boltzmann constant and magnitude 𝑇 is the
bsolute temperature.

The relative magnetic moment per particle with number 𝑖 can be
etermined by the difference (𝛼 − 𝛽 ).
2

𝑖 𝑖 t
The task of determining the thermodynamically and configura-
tionally averaged value of the magnetic moment 𝑀 is greatly simplified
if values 𝛼𝑖 and 𝛽𝑖 are replaced by their average values:

𝛼𝑖 = 𝛼, 𝛽𝑖 = 𝛽. (8)

In this case, the equation for the determination of the particle™s
average relative magnetic moment will have the following form:

𝑀 = ∫ (𝛼 − 𝛽) 𝑊 (𝐻, 𝛼, 𝛽) d𝐻. (9)

Considering the probability of particle distribution over volume and
magnetic moment, the distribution density of the random interaction
field 𝐻 can be represented as

𝑊 (𝐻) = 1
𝑣𝑁 ∬ 𝛿

(

𝐻−
𝑁
∑

1=1
𝜑𝑖

) 𝑁
∏

𝑖=1
𝜏

(

𝐦𝑖
)

d𝐦𝑖d𝑉𝑖. (10)

The characteristic function

𝐴 (𝜌) = ∫ 𝑊 (𝐻) exp (𝑖𝜌𝐻)d𝐻, (11)

is defined as follows:

𝐴 (𝜌) = 1
𝑣𝑁 ∫ exp

(

𝑖𝜌
𝑁
∑

1=1
𝜑𝑖

)

d𝐻 ⋅

⋅∬ 𝛿

(

𝐻 −
𝑁
∑

1=1
𝜑𝑖

) 𝑁
∏

𝑖=1
𝜏
(

𝐦𝑖
)

d𝐦𝑖d𝑉𝑖,

(12)

Considering the normalization conditions (5), the characteristic
unction 𝐴(𝜌) can be rewritten in the following form:

(𝜌) =
(

1− 𝑛
𝑁 ∫ (1 − exp (𝑖𝜌𝜑))𝜏

(

𝐦𝑖
)

d𝐦𝑖d𝑉𝑖

)𝑁
, (13)

here value 𝑛 = 𝑁∕𝑣 is the ‘‘effective’’ number of particles per unit
olume. In the limit 𝑁 → ∞, we have

(𝜌) → exp (−𝐹 (𝜌)), (14)

(𝐻) = ∫

∞

−∞
exp (−𝐹 (𝜌)) exp (−𝑖𝜌𝐻)d𝜌, (15)

(𝜌) = 𝑛∫ d 𝑉 ∫ (1 − exp (𝑖𝜌𝜑))𝜏 (𝐦) d (𝐦) =

= 𝛼𝐼− + 𝛽𝐼+,
(16)

here 𝐼∓ = 𝑛 ∫𝑉 (1 − exp (∓𝑖𝜌𝜑)) d𝑉 .
Here, the change in the sign of the field is considered when the

agnetic moment rotates from direction 𝛼 (up) to direction 𝛽 (down).
he structure of 𝐹 (𝜌) is such that the main contribution to the integral
q. (16) comes from the values of 𝐹 (𝜌) close to zero. Indeed,

(𝜌) = 𝑖 (𝛼 − 𝛽)𝐻0𝜌 −
𝐵2

4
𝜌2 +⋯ . (17)

Restricting ourselves to the first three terms in the expansion of the
xponential from formula (11), we obtain the following:

(𝜌) = exp
(

−𝑖 (𝛼 − 𝛽)𝐻0𝜌 −
𝐵2

4
𝜌2
)

. (18)

Then we have

𝑊 (𝐻) = 1
√

𝜋 𝐵
exp

(

−

(

𝐻 −𝐻0 (𝛼 − 𝛽)
)2

𝐵2

)

, (19)

where

𝐻0 = 𝑛∫ 𝜑 (𝐫) d𝑉 , 𝐵2 = 2𝑛∫ 𝜑2 (𝐫)d𝑉 . (20)

Similar relationships for crystalline ferromagnets are as follows:

0 = 𝑝
∑

𝜑𝑘, 𝐵2 = 2𝑝(1 − 𝑚2𝑝)
∑

𝜑2
𝑘, (21)

here 𝑝 is the concentration of exchange-interacting ions at the sites of
he crystal lattice [12,13]. Near the Curie point, 𝐵2 ≈ 2𝑝

∑

𝜑2 .
𝑘
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Thus, the main characteristics of the distribution function 𝐻0 and
𝐵 are interconnected through the interaction law 𝜑 (𝐫). As for the
exchange interaction of two particles, its energy can be determined as
follows: 𝐸𝑖𝑗 = −𝑚𝑖𝑚𝑗𝐽𝑖𝑗 = −𝑚 ⋅ 𝑚𝐽

(

𝑟𝑖𝑗
)

= −𝑚 𝜑
(

𝑟𝑖𝑗
)

.

3. Self-consistent equation for the average relative magnetic mo-
ment

Obviously, in the state of thermodynamic equilibrium, the average
value of the relative magnetic moment in the Ising model (𝑀 = 𝛼−𝛽) is
obtained by averaging over the Gibbs distribution and configurations:

𝑀 = ∫ tanh
(

𝑚𝐻
𝑘𝐵𝑇

)

𝑊 (𝐻)d𝐻. (22)

Thus, Eq. (22) will have the following form:

𝑀= 1
√

𝜋𝐵 ∫

𝐵

−𝐵
tanh

(

𝑚
(

𝐻+𝐻0𝑀
)

𝑘𝐵𝑇

)

exp
(

−𝐻2

𝐵2

)

d𝐻. (23)

Simple estimates can be obtained by replacing the Gaussian distri-
bution function with an approximate function 𝑓 (𝐻):

𝑓 (𝐻) =

{

0, 𝐻 > 𝐵, 𝐻 < −𝐵,
1
2𝐵 , −𝐵 < 𝐻 < 𝐵.

(24)

The article [14] gives examples of the numerical solution of Eq. (23)
with exact and approximate functions, from which it follows that near
the phase transition points, where the values 𝑀 are small, the error
in the calculations is insignificant. For small values 𝑀 , in this case we
obtain the following:

𝑀 = 1
2 𝐵 ∫

𝐵

−𝐵
tanh

(

𝑚
(

𝐻 +𝐻0𝑀
)

𝑘𝐵𝑇

)

d𝐻. (25)

When expanded in a series in terms of a small parameter 𝑚𝐻0𝑀
𝑘𝐵𝑇

,

tanh
(

𝑚𝐻
𝑘𝐵𝑇

+
𝑚𝐻0𝑀
𝑘𝐵𝑇

)

= tanh (𝑥 + 𝑦)

= tanh 𝑥 + (tanh (𝑥𝑦))′ + 1
2!

(

tanh (𝑥𝑦2)
)′′

+ 1
3!

(

tanh (𝑥𝑦3)
)′′′ .

(26)

After integrating this expression, considering the parity (tanh (𝑥))′

and (tanh (𝑥))′′′ for 𝑀2, we obtain

𝑀2 =
3
(

𝐻0
𝐵 tanh

(

𝑚𝐵
𝑘𝐵𝑇

)

− 1
)

𝐻3
0

𝐵𝑘2𝐵𝑇
2

(

tanh
(

𝑚𝐵
𝑘𝐵𝑇

)

−
(

tanh
(

𝑚𝐵
𝑘𝐵𝑇

))3
) . (27)

The Curie point is determined by the relation

𝐻0
𝐵

tanh
(

𝑚𝐵
𝑘𝐵𝑇𝑐

)

= 1. (28)

Obviously, the relation 𝐻0∕𝐵 must be greater than 1. And the condition
(𝐻0∕𝐵) = 1 determines the critical concentration 𝑝𝑐 of exchange-
interacting ions. In the case of a crystalline ferromagnet and interaction
between particles of only the first coordination sphere, 𝜑𝑘 = 𝑓 = 𝑐𝑜𝑛𝑠𝑡.
From here,

𝛾 =
𝐻0
𝐵

=
𝑝𝑐 𝑧 𝑓

𝑓
√

2𝑝𝑐 𝑧
= 1, (29)

𝑝 = 2
𝑧
, (30)

where 𝑧 is the number of nearest neighbours.
3

Fig. 1. The Bethe–Slater dependence [16] of the exchange integral 𝐽 on the ratio of
the distance between ion 𝑎 to the diameter of the unfilled shell 2𝑟𝑛.

4. Magnetic phase transition in an amorphous alloy

The greatest difficulty for calculating the exchange interaction fields
in an amorphous alloy is the calculation of the exchange integral J be-
tween neighbouring atoms (ions) as a function of the distance between
them. Perhaps the only exact result was obtained when calculating the
exchange interaction energy of an ionized hydrogen molecule [15]. The
exchange energy, up to sign, is proportional to the exchange integral
and has the form

𝐸0 ∼
1
𝑟0

(

1 − 2
3
𝑟0

2
)

exp (−𝑟0), (31)

where 𝑟0 =
𝑎
𝑐 , 𝑐 is the radius of the first Bohr orbit, and 𝑎 is the distance

between the nuclei. In general, electrons™ interaction energy with each
other (overlapping of electron shells) is positive, and the interaction
energy of nuclei and electrons is negative. Therefore, a positive value
of 𝐽 will be favoured by an increase in the ratio of the distance between
ions in a crystal to the radius of electron shell 𝑟𝑛, although the absolute
value of 𝐽 should decrease in this case. Or the atoms of a ferromagnet
must be far enough apart.

As a rule, ferromagnetic materials belong to the group of transition
elements that have an unfilled electron s-shell, that is, an electron shell
with a large orbital number and a total spin moment that is not equal
to zero. Fig. 1 shows the Bethe–Slater dependence [16] of the exchange
integral J on the ratio of the distance between ion a to the diameter of
the unfilled shell 2𝑟𝑛, which qualitatively correctly reflects the depen-
dence of the exchange integral on the distance. Ferromagnetic elements
Fe, Co, and Ni have the highest value of the exchange integral. Based on
such a scheme, it is possible to explain not only the ferromagnetism of
Fe, Co, and Ni but also the antiferromagnetism of alloys, and so forth.

We tried to approximate the Bethe–Slater curve based on formula
(31). Assuming the dependence of the exchange integral on the ratio of
the distance between ions a to the diameter of the unfilled shell 2𝑟𝑛 in
the form:

𝐽 (𝑥) =
𝑒−2𝑥(−1 + 4𝑥2

9 )

𝑥
, (32)

where 𝑥 = 𝑎∕(2𝑟𝑛) = 𝑎∕𝑑. As can be seen in Fig. 2, function (32) is in
good agreement with the Bethe–Slater.

Crystalline iron has a body-centred cubic (bcc) lattice, 2 atoms per
cell. Atoms are located at the vertices of the cube, and one atom is
in the centre of its volume. A small difference in the distances to the
first and second coordination spheres allows us to assume that six ions
of the second coordination sphere should also be included among the
nearest neighbours, considering the corresponding exchange integral.
It is assumed that higher-order coordination spheres do not make a
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Fig. 2. Dependence of the exchange integral J on the ratio of the distance between
ion a to the diameter of the unfilled shell 2𝑟𝑛 (𝑥 = 𝑎

2r𝑛
= 𝑎

𝑑
). The results for function

(32) are shown.

significant contribution to the exchange interaction with the central
atom. Let us find from Eq. (21) near the phase transition point values
𝐻0 and 𝐵 for pure iron, limiting ourselves to two coordination spheres,
taking into account that for the first coordination sphere 𝑥1 =

√

3
2

𝑎0
𝑑 =

1.678 and the second coordination sphere 𝑥2 =
√

4
2 = 𝑎0

𝑑 = 1.936, the
lattice parameter for iron 𝑎0 = 2.866 ⋅ 10−10 m and the ion diameter for
iron 𝑑 = 148 ⋅10−12 m.

𝐻0 = 𝐴

⎛

⎜

⎜

⎜

⎝

8 ⋅
𝑒−2𝑥1

(

−1+ 4𝑥12

9

)

𝑥1
+6 ⋅

𝑒−2𝑥2
(

−1+ 4𝑥22

9

)

𝑥2

⎞

⎟

⎟

⎟

⎠

,

𝐵 = 𝐴

√

√

√

√

√

√

√

√

16

⎛

⎜

⎜

⎜

⎝

𝑒−2𝑥1
(

4𝑥12

9
−1

)

𝑥1

⎞

⎟

⎟

⎟

⎠

2

+12

⎛

⎜

⎜

⎜

⎝

𝑒−2𝑥2
(

4𝑥22

9
−1

)

𝑥2

⎞

⎟

⎟

⎟

⎠

2

.

(33)

Here, parameter 𝐴 gives the Bethe–Slater function the dimension of
exchange field strength. Then, knowing the Curie temperature of pure
iron 𝑇𝑐 = 1043 K, the magnetic moment in Bohr magnetons 𝑚 =
2.2𝜇𝐵 , 𝜇𝐵 = 927 ⋅ 10−26 J T−1 by formula (28), considering the values
from formula (33), we determine 𝐴 = 88032 T. The effective number
of nearest neighbours 𝑧 =

(

𝐻0
𝐵

)2 2
𝑝 = 13.64. In [17], the curves of

dependence 𝐼𝑠∕𝐼𝑠𝑜 = 𝑓 (𝑇 ) of spinning tapes based on Fe are presented.
One of these curves, corresponding to iron content of 70%, is shown in
Fig. 3.

Using the approach described above, consider an amorphous alloy
containing iron in an amount of 70% of the total composition. The
volume of the crystal cell in accepted units is . The volume occupied
by two ions is, where is the Holschmidt radius and 𝑟 = 74 ⋅ 10−12 m is
the iron ion radius. The volume fraction occupied by ions is defined as
𝑁𝑉0
𝑉 = 4.93

7.26 = 0.68. Thus, the effective density based on formula (3) can
be found as 𝑛 = 0.7𝑁𝑉0

𝑉

(

1 + 0.7𝑁𝑉0
2𝑉

)

= 0.59.
Using formula (20), we determine the moments of the distribution

function by integrating over volume:

𝐻0 = 𝐴 ⋅ 𝑛∫ 𝜑 (𝑟) d𝑉 =

= 8802 ⋅ 0.59 ⋅ 4𝜋 ∫

2

1.677
𝑒−2𝑥

(

−1 + 4𝑥2
9

)

𝑥d𝑥 = 489 T,

𝐵 = 𝐴

√

2𝑛∫ 𝜑2 (𝑟) d𝑉 =

= 8802

√

0.59⋅8𝜋 ∫

2

1.677

(

𝑒−2𝑥
(

−1+4𝑥2
9

))2
d𝑥=241 T.

(34)

The integration limits were selected from 𝑟𝑚𝑖𝑛 = 𝑟𝑔
𝑟 = 1.677 to 𝑟𝑚𝑎𝑥,

where the upper limit 𝑟 can be found, assuming that 14 ions with a
4

𝑚𝑎𝑥
Fig. 3. The curve of dependence 𝐼𝑠∕𝐼𝑠𝑜 = 𝑓 (𝑇 ) of spinning tapes based on Fe [17].

filling density of 0.68 should be placed in the resulting volume:

0.68 ⋅ 4
3
𝜋
(

𝑟3𝑚𝑎𝑥 − 𝑟3𝑚𝑖𝑛
)

= 14. (35)

From Eq. (35), it follows that 𝑟𝑚𝑎𝑥 = 2. From Eqs. (28) and (34), one can
determine the Curie temperature of an amorphous alloy with an iron
concentration of 70% and a magnetic moment of iron ions, 𝑚 = 1.9𝜇𝐵 .
We considered that the average magnetic moment of bulk iron changes
to 1.9𝜇𝐵 when passing from a crystalline compound to its amorphous
counterpart [18]. Substituting into Eq. (28) the values obtained from
formula (34), as well as the calculated parameter 𝐴, we find that the
Curie temperature in the case of an amorphous alloy was 𝑇𝑐 ≈ 570 K,
which is consistent with the result shown in Fig. 3.

It is easy to see that by replacing the concentration by 74% we
can obtain a temperature of 645 K from our formulas, which also
corresponds to the experimental data.

Note that our approach practically does not consider the effect of
metalloids, which contribute to the amorphization of alloys. Therefore,
the result obtained can be considered approximate. Using the values
𝐻0 and 𝐵 obtained by us, we can estimate the ‘‘effective number of
nearest neighbours’’ 𝑧 of iron ions for an amorphous alloy using the
ratio 𝑧 =

(

𝐻0
𝐵

)2 2
𝑝 . Then, 𝑧 = 13.9, which also agrees with the result

obtained experimentally in [17].

5. Conclusion

Thus, the method of random fields of exchange interaction makes
it possible to determine the conditions for the occurrence of ferro-
magnetism in an amorphous alloy depending on the concentration of
exchange-interacting ions, their Holschmidt radius, and the type of
crystal lattice of the transition metal. From Eq. (28), it follows that
the occurrence of ferromagnetism is possible only under the condition
𝐻0
𝐵 > 1. From a physical point of view, this can be interpreted as the

emergence of a leaky cluster. If 0 < 𝐻0
𝐵 < 1, then a cluster spin glass

state type structure appears. When 𝐻0
𝐵 < 0, antiferromagnetic ordering

is possible. The Curie point can significantly depend on the magnetic
moment of iron ions, which in turn, is determined by the concentration
and type of metalloids that make up the alloy. The data known to us
indicate that in alloys with an iron ion concentration of 70%–80%, the
magnetic moment per atom ranges from 1.2𝜇𝐵 to 1.9𝜇𝐵 . The effective
number of the nearest neighbours at an iron ion concentration of
70% during amorphization turns out to be approximately 13.9, which
corresponds to the experimental data.
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