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ABSTRACT 

Cardiovascular diseases (CVD) are the leading cause of death in most countries around the world, making the accurate 
assessment of risks and the selection of individual preventive strategies a current focus in healthcare. In this article, the 
authors presented a prototype of a Clinical Decision Support System (CDSS) for predicting and preventing cardiovascular 
risks based on a hybrid architecture that integrates machine learning models and ontological knowledge bases. A 
microservice architecture based on the Cloud-Edge approach is proposed for optimizing computational resources when 
processing tabular data, signals, video, and images, as well as for enhancing the effectiveness of integration with various 
Healthcare Information Systems (HIS). The CDSS supports the formalization not only of medical history data and results 
of studies but also the rules for interpreting the results of predictions based on machine learning models and methods of 
explainable artificial intelligence (XAI). The developed CDSS includes widely used tools in clinical cardiology and 
cardiothoracic surgery for risk assessment, as well as proprietary machine learning models for predicting in-hospital 
mortality, and others. These models contribute to making informed medical decisions for the diagnosis, prevention, and 
treatment of CVD. The prototype was implemented at the Medical Center of the Far Eastern Federal University and 
integrated with the "1C" HIS. The experience of implementing the prototype demonstrated the high potential of hybrid 
CDSS based on microservice architecture for use in clinical practice. 

Keywords: Clinical Decision Support System, Hybrid Artificial Intelligence, Microservice Architecture, Machine 
Learning, Knowledge Base, Explainable Artificial Intelligence, Predictive model 

 

1. INTRODUCTION 

The application of information technologies in clinical medicine includes the use of healthcare process management 
systems, which encompass Healthcare Information Systems (HIS) and Clinical Decision Support Systems (CDSS). They 
are designed to reduce the risk of medical errors, expand diagnostic capabilities, personalize the prediction of adverse 
events, improve management quality, and more [44]. The development of CDSS has a long history and is associated with 
dominant trends in artificial intelligence, architectural solutions in corporate information systems, and clinical health 
system practices. For a long time, CDSS was developed based on knowledge management in the format of expert intelligent 
systems. In recent years, CDSS is increasingly associated with systems using predictive and diagnostic models of machine 
learning [42].  

Technologically, several CDSS architectures are distinguished: autonomous models, systems integrated into HIS, 
standardized, and service-oriented models [46]. Autonomous systems are calculators of individual scales, where data input 



 
 

 
 

is manually performed by the doctor. In modern implementations, such calculators use a service architecture in the form 
of SaaS (Software as a Service), which does not solve the problem of repeated data entry and integration with the 
physician's workplace. HIS integrated systems allow physicians to avoid double data entry, but they require HIS developers 
to have broad CDSS expertise, significantly limiting the scalability of such a system [19]. The response to this challenge 
was the standardization of CDSS content for simplified embedding into HIS from different manufacturers [1]. In the last 
two decades, new CDSS architectures have been proposed. For example, the interaction between CDSS and HIS was 
achieved using an application programming interface (API) [40]. Furthermore, the use of a virtual medical record was 
proposed, solving the problem of using different medical terms for the same concept in several HIS. Finally, an approach 
emerged that proposed implementing CDSS based on web services [27]. Any HIS can send a standardized protocol request 
to CDSS, implemented as a service. Despite its many advantages, this approach requires HIS developers to implement 
requests to cloud-based CDSS and transfer data from Electronic Health Records (EHR) into the system, increasing the 
demands on HIS suppliers and causing dissatisfaction among medical organizations.  

All these CDSS models implemented the storage of formalized knowledge from individual areas of clinical medicine and 
allowed comparing this knowledge with clinical-functional and laboratory indicators of patients for automated decision-
making in clinical practice [33].  

Contemporary research is characterized by the widespread use of machine learning methods for diagnosing and predicting 
the development of diseases and their complications [19, 21, 26]. The use of data-driven machine learning models is a 
natural extension of CDSS capabilities [30]. There is an increasing need for multimodal systems that integrate clinical data 
and results of instrumental studies (images, signals, and video), posing the challenge of combined data processing of 
different types and at different system nodes. For example, in diagnosing cancer, new generation machine learning 
predictive and diagnostic models can be used, based on the multidimensional integration of sub-models, each built on its 
domain data: clinical analyses, radiological and pathological studies, genome research [8]. In analyzing gastroscopic 
images and videos recorded during endoscopy, part of the computational load can fall on local systems and part on cloud 
systems, effectively combining prompt result delivery (using edge-level), measurement quality (cloud-level) [14], and 
potentially reducing data transmission costs to the cloud by preprocessing and compressing data at the edge level. 

The goal of our study is to develop an architecture for a hybrid multimodal CDSS that integrates intelligent systems based 
on knowledge, predictive machine learning models, elements of prediction result interpretation, HIS, service architecture 
framework, cloud solutions, and services at the edge level. 

2. CURRENT STATE OF AFFAIRS 

Intelligent systems include formalized knowledge bases, developed according to a certain model of representation, and 
inference and reasoning mechanisms [16]. These systems continue to evolve, providing physicians with up-to-date 
information captured in clinical guidelines and diagnostic and treatment protocols [35, 36, 41]. The advantage of such 
CDSS is the ability to provide clear explanations derived from formalized knowledge [45]. However, this approach is 
limited by simplified knowledge models that may not always reflect the complexity of real clinical scenarios. Such CDSS 
form explanations of the decision-making process according to their simplified knowledge model [34], but advanced 
knowledge models corresponding to real-world representations in this field are required for intelligent physician support. 

With the growth of data in clinical medicine, including genomics and medical imaging, there is an increasing need for 
more complex models that can integrate and analyze multimodal data [2, 28]. The development of graph representations 
of knowledge and reasoning based on semantic networks and knowledge graphs is widely used in intelligent systems [47]. 
Semantic modeling allows for the formation of clinical knowledge as interpretable clinical guidelines, an alternative to 
text-based guides and machine-readable specifications of recommendations [38]. Interpretable clinical guidelines, 
accumulated in electronic recommendation libraries (DeGeL), are terminologically compatible with electronic patient 
records (EPR). To assist physicians, complex systems are often created that cover diagnosis, risk assessment, treatment, 



 
 

 
 

and other tasks (Cardio-S, ASMO-CARDIO, Infective Endocarditis, Cardiologs, Cardiac Care Assistant, escardio.org, 
HEART Pathway, Cardiovascular Disease Management Tool, FFRCT HeartFlow, Cardio-ECO, Cardio-ANTIB). These 
approaches provide opportunities for developing more complex and scalable CDSS, adaptable to diverse clinical needs 
[39, 13]. Another type of CDSS are systems that do not directly use knowledge from guidelines and clinical 
recommendations but apply machine learning models to support decision-making. The intensive growth of these systems 
is associated with the development of machine learning methods and their effectiveness in medicine [43]. These systems 
have shown significant potential in improving the accuracy of disease diagnosis and outcome prediction [20, 24 , 3].  

However, despite numerous studies on machine learning model development, only a few have been implemented in CDSS 
and introduced into clinical practice [16]. As the number of ML-based CDSS grows, so does the understanding of the 
challenges in implementing these systems; many remain insufficiently explainable to users, reducing trust and limiting 
clinical application [23]. However, data-based CDSS often still do not include explainable artificial intelligence 
mechanisms [5]. 

Recently, there have been projects of modern CDSS proposing the use of hybrid architecture, integrating different methods 
and approaches [11]. In CDSS, there is potential for combining machine learning models and diagnostic protocol 
knowledge bases [30]. An important advantage of the proposed CDSS model by the authors is the support for explanation 
tools and organizing cyclic processes of model and knowledge updates to increase trust in the system's results. Other 
researchers also emphasize the need for continuous knowledge base updates through data extraction and standardization 
in CDSS [18]. 

From a technological standpoint, the use of service-oriented architecture remains attractive for modern CDSS [18, 37]. 
The task of integrating CDSS and HIS based on the FHIR standard is one of directions that promises to simplify this 
process and improve their compatibility [41]. Authors of CDSS projects developed based on microservice architecture 
point to increased system complexity, longer transaction times, and complications in logging multiple services. The 
combined use of cloud and edge computing technologies for processing medical images represents a promising direction 
that could provide more efficient and scalable data processing directly at the physician's workplace [6]. 

3. CLINICAL DECISION SUPPORT SYSTEM 

In this work, we propose a solution that combines approaches at three levels: conceptual, logical, and physical. In the 
context of this research, the term "hybrid architecture of CDSS" refers to systems in which machine learning models and 
intelligent knowledge bases are integrated at the conceptual level, a microservice framework system architecture and HIS 
at the logical level, and cloud and local data processing at the physical level. The aim of hybrid integration is to take the 
best from all concepts: the flexibility and predictive ability of machine learning (ML) models, and the explainability based 
on knowledge of the subject area, formally represented by ontologies. Microservice architecture is a variant of SOA 
(Service-Oriented Architecture), in which an application is implemented as a group of small, independent components 
(services) with specialized business logic. Each service is loosely coupled from the others, can have its independent 
database, can be implemented in a different programming language, and placed on a separate server [15]. Compared to 
SOA, microservice architecture provides greater system flexibility and allows for scaling of individual CDSS components 
independently of each other, enabling multiple research teams to work together, quickly implement and evaluate new ideas 
and techniques, and segregate data used by the microservices [48, 25]. 

In this study, it is assumed that each model is implemented as a separate microservice, performing a strictly limited function. 
The overall task of diagnosis or prediction may include several subtasks, such as computation, data processing, explanation 
of results, etc. Architecturally, each of these tasks should be delegated to a separate microservice. More on this will be 
discussed later. 

This chapter focuses on the development of a hybrid CDSS architecture. The first important feature - hybridity - is achieved 
through the integration of intelligent knowledge bases and machine learning models. Given the inherent complexity, 



 
 

 
 

interpreting the results of machine learning models requires additional research with explainable artificial intelligence 
methods. Subsequently, the knowledge obtained in this way can be formalized in the CDSS knowledge base and applied 
in explaining predictive models using the intelligent knowledge base solver. Hybrid CDSS can mitigate the disadvantages 
and leverage the advantages of homogeneous systems: knowledge bases provide explanations and interpretations of 
diagnostic results, forecasts, and recommendations, while machine learning models assess risks and predict clinical events, 
sometimes with accuracy surpassing expert physicians. 

The second key aspect of our study is the design of a microservice architecture and its combination with the Cloud-Edge 
approach. The use of microservices is expected to yield positive results in scenarios involving long-term application, 
refinement, and maintenance of a complex multi-module system, interaction of multiple scientific and development teams, 
and the need for integration with other systems such as HIS, laboratory information systems, wearable patient monitoring 
devices, etc. 

In the following sections of this chapter, we will discuss the key requirements, the concept of our system, technological 
aspects, and propose accompanying diagrams for a more visual representation of the key features of the architecture. 

The proposed CDSS architecture, combining a microservice structure and Cloud-Edge approach, could be the solution to 
scalability and integration challenges, as well as reducing expenses on costly communication between services. 

 
3.1. Key requirements 

The operation of a Clinical Decision Support System (CDSS) is based on requirements that reflect the key stages of the 
diagnostic and treatment process [12].  

These stages include assisting physicians in creating EHR, preliminary disease diagnosis based on available primary data 
(patient complaints, results of objective examinations, possibly results of some laboratory and instrumental studies), 
disease diagnosis including differential diagnosis, treatment prescription (depending on the disease – medication, 
rehabilitation, surgery, or their combination), patient condition monitoring, assessment of the prognosis of disease 
development and complications, treatment, and recovery. 

Considering the functional characteristics of physicians' practical activities and the analysis of literature sources [29], an 
ideal CDSS should support the entire spectrum of diagnostic and therapeutic tasks or be capable of expanding it through 
the integration of new functionalities. The system should be implemented as a single service (within a microservice 
architecture) with the ability to connect new services that will refine or expand the main functionality (for example, new, 
proprietary disease prognosis methods) and the ability to call any of the microservices (each microservice implements a 
specific functionality of the system). Additionally, the system should maintain operability during internet outages. It should 
accommodate the processing of data from wearable patient devices and handle large volumes of data from endoscopy, 
radiography, etc. For diagnosis and treatment planning, knowledge contained in the clinical guidelines of the Ministry of 
Health should be used, with the possibility of expanding it with new proprietary diagnostic and treatment methods (for the 
trial and clinical testing of new diagnostic tools and treatment methods). All decisions generated by the CDSS should have 
an explanation and/or interpretation component. The system must have the means to integrate with various medical 
information systems and to form/modify knowledge bases in a structure and form understandable to subject matter experts. 

A knowledge base management system is used in the CDSS for supporting regulated rules and clinical protocols, and 
machine learning models for applying prognostic scales. Thus, the main requirement for the CDSS is a hybrid architecture 
that combines intelligent systems based on knowledge and machine learning models, implemented by microservices. 

It is important to note that some of the formulated requirements do not directly influence the architecture of the CDSS. In 
the context of the possibility of expanding functionality with new microservices, this task is transferred to their developers. 
The CDSS itself must be capable of supporting the expansion of such functionality. 



 
 

 
 

 
3.2. Concept 

Decision support in CDSS is facilitated through artificial intelligence methods based on data and knowledge. Data-driven 
methods involve intelligent data analysis, where knowledge is extracted from datasets using statistical and machine 
learning techniques. Knowledge-based methods encompass formalized knowledge in the form of ontological knowledge 
bases with a graph structure, applied to medical data to generate inferences that assist physicians in diagnostic searches 
and treatment and prevention recommendations. Ontological graph knowledge bases also describe knowledge necessary 
for generating explanations and interpretations of prognosis results, diagnosis, and prescribed treatments. 

The informational components of our CDSS include ontologies, knowledge, and data. Ontologies are models of knowledge 
and data describing their structure and the terms in which they are formed, as well as a set of rules for knowledge generation, 
data formation, completeness verification, and partial semantic correctness. Knowledge consists of formally represented 
dependencies and causal relationships between data for solving practical medicine tasks. Data is a shared set of formalized 
or unformalized facts of the subject area, described according to a conceptual scheme (ontology), available for processing 
but without interpretative capability, which is provided by formalized knowledge. Next, let's look at both types of data. 

Formalized data are organized according to the supported ontology. Examples include EHR, where each attribute is a 
named field (number, categorical variable, string, etc.) with additional characteristics like modality, synonymy, and 
multilingualism. Synonymy is crucial for CDSS architecture design, solving compatibility issues with different HIS and 
using different terms for identical concepts. We highlighted this requirement among the key ones in the previous section 
of this study. 

Unformalized (or weakly formalized) data include images, textual documents, charts, diagrams, audio information, etc. 
Examples include results of instrumental studies requiring further specialized formalization processes. In our environment 
(FEFU Medical Center), the most popular ones are the results of ECG, endoscopy, and radiography. 

We will consider primary medical data in CDSS to be EHR, including medical histories and ambulatory cards, or real-
time observed signals from wearable patient sensors. The CDSS utilizes primary data for three purposes: upon a physician's 
request, the CDSS processes primary data and provides information in accordance with the request (possible diagnosis 
and/or request for necessary data to clarify the diagnosis, prognosis of disease development or complications, prescription 
of additional examinations or treatments, including medication therapy, recommendations for lifestyle and dietary changes, 
etc.); the formation of datasets for conducting scientific research, (re)training of prognostic and diagnostic models; and 
real-time monitoring of the patient's condition and alerting the physician according to triggers (detection of anomalies, 
prediction of the onset of an adverse condition in the near future, etc.). 

Primary data in the CDSS is acquired through four methods, which include integration with HIS  (data from HIS is 
transferred to the CDSS, where it can be stored as part of selected EHR data); importing data from external sources, 
manually collected or previously extracted from other HIS; entering data through the CDSS user interface, allowing the 
input of both partial data for request implementation and complete EHRs, medical histories, and outpatient records; and 
through the CDSS edge-module API from wearable devices used by patients. 

Data integrated into the CDSS via HIS is used both for fulfilling physician requests and for further research. Data uploaded 
through the second method is primarily intended for performing data analysis, training and validating models, and verifying 
formalized rules. It can also be available as a base for searching clinical case analogs (precedents). Data entry through the 
CDSS interface is intended for verifying the operation of models and algorithms in the CDSS, as well as for physicians to 
simulate prognostic and diagnostic decisions in case of changes in patient risk factors and in the absence of HIS. The fourth 
data channel is essential for real-time monitoring of patient conditions for timely prediction of health deterioration, 
assessing treatment effectiveness, and proactively presenting recommendations to the treating physician. 

Knowledge is also divided into three conceptual categories: formalized, semi-formalized, and non-formalized. 



 
 

 
 

Formalized knowledge stores rules (causal-temporal and other dependencies) of the subject area and can be applied to 
formalized data, to the results of data processing, or other knowledge for decision-making. Formalized knowledge 
describes diagnostic protocols, treatment, clinical guidelines, etc. Some types of prognostic scales can also be described 
with formalized knowledge, establishing a correspondence between feature values and scores correlated with the risks of 
adverse events. Formalized knowledge allows for the interpretation of results and the application of knowledge to data. 

Semi-formalized knowledge in the CDSS represents descriptions of machine learning predictive models, which are 
implemented as microservices. These models, implementing diagnosis and predicting the development of diseases and 
their complications, are developed using machine learning methods such as linear and logistic regressions, random forest, 
stochastic gradient boosting, artificial neural networks, etc. 

Non-formalized knowledge of the subject area (texts of protocols and clinical recommendations, articles, manuals, etc.) 
includes textual, graphical, audio information in file format, which can be offered to physicians as needed. 

The application of knowledge to CDSS data involves two approaches: microservices and solvers. Microservices are 
agents that implement computations using a machine learning model or algorithm. Solvers check the fulfillment of 
conditions and implement actions according to the ontological knowledge base. 

Besides computational microservices, the CDSS includes system-forming services that provide message routing, 
integration tasks, user interface generation, etc. An important task within the microservice approach is microservice 
orchestration and infrastructure organization, which will be discussed in the next section. 

The machine learning models implemented in the CDSS are the result of data mining conducted by the project authors or 
other researchers, published in scientific journals. The tasks solved by these models can be grouped as follows: (1) 
classification is used for diagnostic tasks, including differential diagnosis, and predicting the development of diseases and 
complications in the near term (up to 30 days) after cardiothoracic surgery; (2) regression is employed for modeling the 
duration of clinical processes, such as the length of treatment, hospitalization, risk of developing complications, and for 
assessing the normative values of clinical-functional indicators of patients for personalized assessment of disease severity; 
(3) clustering and phenotyping are applied for correlating patients with groups having similar disease progression 
characteristics. 

Data mining, which develops these models, includes methods of statistical analysis, selection and validation of predictors, 
training, cross-validation and testing of models, identification of risk factors, formation of their phenotypes, assessment of 
the relative contribution of predictors and their combinations to the realization of the endpoint, etc. 

For model development, data imported into the CDSS from HIS or external datasets are used. Information about the 
relationship between data and the models trained on them is stored in the CDSS when describing models for further 
validation and retraining. As new labeled data corresponding to the CDSS prognostic models accumulates, the used models 
are validated, further trained, and new versions are introduced into the CDSS. This process is not only applicable to 
prognostic and diagnostic machine learning models but also for validating models based on formalized rules, as well as 
for checking the effectiveness of clinical protocols and recommendations formalized in the CDSS knowledge bases. 
Constant validation and updating of models and knowledge is a recurring process, initiated when new labeled datasets are 
accumulated. 

Integration with HIS in the CDSS can be implemented in several ways. The optimal approach allows physicians to access 
all necessary information for decision-making from the CDSS at their workstations. However, such embedded integration 
may not be supported by some HIS vendors. In this case, alternative integration schemes may be considered: the physician 
uses the CDSS user interface and the CDSS makes requests to HIS to obtain data from EHRs , medical histories, or 
outpatient cards for further processing and presenting results in the CDSS user interface. If real-time patient monitoring is 
required and integration with HIS is not available, the CDSS can alert the physician through other channels: SMS, an 
emergency dedicated email channel, or via APIs of messaging systems implemented in the healthcare facility. 



 
 

 
 

The explanation of predictions and decisions by the CDSS remains a separate issue.  

The explainability of AI's forecasts, recommendations, and predictions in healthcare is an unsolved yet crucial problem 
today[32, 31, 4].  

Opinions on what constitutes an "explanation" diverge in the context of healthcare, depending on the user's interests: 
physicians, patients, lawyers, investors, or clinic owners[6] [17].  

Therefore, we choose a formal approach, which we find more universal because it is unequivocally formalized by 
mathematical and statistical methods, yields predictable results, and can be further translated or formatted into any other 
user-friendly representation. 

Thus, the task of explaining the solutions proposed by the CDSS is implemented through one of the following mechanisms: 
(1) sequential traversal of the knowledge base tree with conditions met for the case under analysis; (2) formalized clinical 
interpretation in the knowledge base of forecast or diagnostic results obtained through computational agents; (3) formalized 
risk factors in the knowledge base that correspond to the case under analysis and serve as predictors for prognostic models; 
(4) formalized relative importance of predictors in the knowledge base, calculated using explainable artificial intelligence 
methods; formalized phenotypes of risk factors in the knowledge base corresponding to the case under analysis. 

For instance, the importance of predictors for a specific case can be calculated using one of the popular methods: SHAP 
or LIME (these methods have become the de facto standard in the industry, so we will not dwell on them in detail), or 
proprietary methods developed by the author of a corresponding microservice. 

Following this, the knowledge integrated into a relevant ontology (which describes the connections between the 
significance of predictors and clinical decisions) is applied to data, and further recommendations are suggested based on 
the most significant predictors in the forecast: additional examinations (such as tests, if certain parameters exceed normal 
values), preventive measures, recommended treatments, etc.  

In this way, in the process of presenting a solution, the CDSS also accompanies it with an explanation, which focuses the 
physician's attention on the most significant factors and also proposes further therapeutic and diagnostic measures. 

Prognostic models also include procedures for explanation and interpretation. The prescribed treatment and preventive 
recommendations should be accompanied by arguments and logic of inference.  

Two tasks must be solved to implement these approaches in the CDSS. The first one requires to use methods of explainable 
artificial intelligence and interpretable machine learning for each prognostic and diagnostic model of the CDSS. The goal 
is to calculate threshold values of indicators with the highest predictive potential. Basing on this further steps are: (1) form 
phenotypes of risk factors explaining the development of an adverse event, (2) assess the contribution of each phenotype 
and individual risk factors to its realization, (3) explain the reasons for deviations from phenotypes, etc.  

The second task is to store the explanations and interpretations in a formalized form in accordance with the template of a 
specialized ontology. 

It should be noted that the recommendations and knowledge formalized in ontologies may not be universal in the context 
of using the CDSS in different administrative-territorial units (countries), where specific health regulations are 
implemented.  

However, through the use of microservices architecture, different explanation microservices with their integrated 
knowledge bases, accessible only to them, can be used in such contexts and mitigate the problem. 

Ontological Approach to Creating Hybrid Technology. 

In implementing CDSS, a two-level ontological approach is used for knowledge base formation, characterized mainly by 
the separation of ontologies from knowledge bases. This separation allows for the scaling of CDSS to new diseases without 
altering the code of the knowledge base handler, as multiple knowledge bases can be developed based on a single ontology. 



 
 

 
 

The scalability of CDSS is dependent on the generality of ontologies. General ontologies such as the ontology of disease 
diagnostics, treatment prescription (medication, rehabilitation, surgery), prognosis, and risk assessment of critical 
conditions, independent of medical specialty and disease group, have been created and utilized over the years to develop 
separate CDSS for diagnostics and treatment across various disease groups (respiratory, digestive, circulatory, 
genitourinary, musculoskeletal, nervous systems, endocrine system diseases, metabolic disorders, etc.). 

Ontological knowledge models are implemented on the IACPaaS platform, which provides infrastructure for forming 
ontology-based knowledge portals and services. The ontological approach and semantic knowledge representation are 
human-understandable and machine-interpretable. Software solvers reason based on interpretable knowledge and save 
their results according to ontology explanations, allowing for the combination of functionality and disease groups. 

Ontology of knowledge on Disease Diagnostic. 

The ontology of knowledge on disease diagnostics provides the capability to form knowledge bases with the following 
properties. 

A symptom complex is a set of patient signs (complaints, objective, laboratory, instrumental studies), or a syndrome (a 
group of signs united by a common pathogenesis). Symptom complexes (clinical picture) of diseases can be described 
considering user categories. Using categorization allows for the most accurate description of clinical manifestations and 
data from laboratory and instrumental indicators, for example, considering age, profession, conditions like pregnancy, etc., 
enhancing the informational significance of any symptom complex.  

The value of each sign is extended by a range of modality values (necessity, characteristic, possibility, intensity, etc.); 

Disease diagnostics can be represented by alternative symptom complexes, facilitating the formalization of various 
approaches to identifying reliable disease signs, allowing for the selection of the most sparing, rapid, or cost-effective 
diagnostic approach; 

A diagnosis can be described considering etiology, pathogenesis, variant of progression, etc., for differential diagnosis of 
diseases and the selection of appropriate treatment methods; 

For a disease, necessary conditions that predispose or contribute to its development can be set, such as age, gender, season, 
etc. 

Diagnostics can take into account the values of characteristics altered by event impacts, such as ecological factors (e.g., 
polluted air, water, the impact of harmful industrial, agricultural, household, and other factors), quantitative and qualitative 
inadequacy of nutrition, disruption of the orderly and optimal balance of work and active rest, social factors (e.g., frequent 
conflict situations), and more. 

In describing a disease, different variations in the dynamics of sign values can be outlined. 

Ontology of Knowledge on Disease Treatment 

The ontology of knowledge on disease treatment facilitates the formation of knowledge about the treatment of a specific 
disease or a group of diseases sharing common pathogenetic principles, etiological components, or clinically significant 
symptomatic manifestations. This disease ontology possesses the following characteristics. 

Therapy Model: Logically coherent representations of the principles and extents of therapy for a given pathological 
process, encompassing Type, Goal, and Scheme of therapy. For a single disease, several alternative therapy models may 
be described (for example, in accordance with clinical guidelines from the Ministry of Health, new authorial treatment 
methods); 

Type of Therapy: Encompasses a class of concepts directly describing the type of therapy, such as etiotropic, pathogenetic, 
symptomatic, empirical, and other types of therapy; 



 
 

 
 

Goal of Therapy: A class of concepts characterizing the purpose of the treatment, such as hemostatic, antiemetic, 
antipruritic, detoxification, or mucolytic therapy. Characteristics that define the goal of therapy include clinical data 
descriptions that allow for the recognition of the achievement of therapy goals; 

Key Element of Ontology: A complexly structured block of conditions accompanying each section of the ontology, 
enabling the formal representation of necessary clinical criteria that determine its application conditions in the treatment 
of a given disease; 

Therapy Scheme: Defines the list of active substances, their combinations, administration regimen, and dosages of 
medicinal products (MPs) for optimal disease treatment. This section of the ontology is structured as follows: Condition 
for using this group of MPs, Group of alternatively used MPs, Complexly used MPs. The group of alternatively used MPs 
contains the following nodes: Active Substance and Jointly Used MPs. Each MP is described by a group of terms defining 
its clinical necessity: Prescription Variant, including elements: Dosage, Release Form, Application Method, Frequency of 
Application, Duration of Application. 

Control Points: The Control Points are specified for each MP, for Therapy Effectiveness Assessment, Control of Expected 
Side Effects, Condition on the Active Substance, and Trade Names of the Active Substance. Control points for therapy 
effectiveness assessment allow for monitoring the application of the active substance, including descriptions of the disease 
characteristic/s for treatment monitoring. Control of expected side effects – a term of the ontology defining the safety of 
using MPs, includes a characteristic describing the type of side effect/adverse effect and the frequency of its monitoring. 

The ontology of knowledge on prognosis and risks of conditions and diseases. 

This ontology is designed for the formal description of the body's state dependency on the combination of observed signs 
and influencing factors, or pathology development variants depending on known factors. This ontology possesses the 
following properties. 

In one knowledge base, alternative methodologies for assessing personalized risks can be described; 

When describing risks, the type of threat, degree of threat, name/author of the methodology, possible necessary conditions, 
as well as the method of determination are described. The type of threat is characterized by: risk of occurrence, risk of first 
case, risk of recurrence, risk of progression to a severe stage, life expectancy prognosis, risk of death; the degree of threat 
is expressed as a percentage (probability) or a scale value (ranging from "very high risk" to "no risk"); 

The ontology subtree with the root 'Method of Determination' allows the integration of different methods for determining 
risks and state prognosis in one CDSS: calculated by a model, calculated by a formula, calculated by a declarative formula 
or determined by declarative knowledge). 

Thus, the ontology on the prognosis and risks of states and diseases serves not only as a structure for describing declarative 
knowledge but also as an integrating structure, ensuring the fulfillment of the main requirement of CDSS - its hybridity. 

 
3.3. Vision for Cloud-Edge Integration  

As previously discussed, modern Clinical Decision Support Systems (CDSS) tend to be cloud-based and process data 
distributively, which definitely has its advantages and drawbacks (see Chapters 1 and 2). We believe that combining cloud 
computing with edge computing has enormous potential, as demonstrated in one of studies [6]. By edge level, we mean 
the level closest to the user, accessible without an internet connection, such as a local hospital network. 

We have identified the following potential tasks and problems associated with the exclusive use of cloud computing. 

The need for real-time data processing and the absence of a stable internet connection. For patients in intensive care 
and their physicians, instantaneous decision-making and data retrieval can be critical, with delays in data transmission or 



 
 

 
 

even communication breakdowns being a common occurrence with cloud computing alone. This situation worsens in 
remote areas or in meteorological phenomena like snow or sand storms. 

Transmission of large data volumes and traffic costs. Roughly, a file containing 1 minute of HD endoscopy video 
(1920-1080px) can occupy 35-40 MB. For a 10-minute procedure, this already amounts to 350-400 MB, which, even with 
modern technologies, can pose a problem when uploading to the cloud, not to mention data transmission within the CDSS 
to the final processing service. Needless to say, the volume of such traffic generated by all patients in a medical institution 
over a year can become a significant expense item and a limiting factor in CDSS implementation, indicating that data 
preprocessing is an important stage. 

Confidentiality. Compliance with regulations for the protection, storage, and processing of patient personal data becomes 
much more complex when these data are sent to a cloud controlled by a third party. 

Interaction with wearable patient sensors and IoT devices. If such functionality is not integrated into the institution's 
HIS, or if the HIS is unable to communicate this data to the CDSS due to its own implementation limitations, processing 
signals will, one way or another, require local CDSS presence for interacting with these devices. 

A solution to these problems could be the use of a distributed structure that employs both cloud and edge computing, thus 
combining them into cloud-edge. Edge computing could be carried out on a separate server, physically connected to the 
local network of the medical institution, but also part of the overall cloud infrastructure. Updating and servicing the CDSS 
portion located on this node should also be centralized and automated, as with cloud services. Depending on the end user's 
needs, this node can duplicate the functionality of all features available in the cloud or only selected ones. These could be 
special models, specifically developed for the institution and not available to other cloud users, or conversely, the most 
popular functions in everyday practice, access to which should not be limited in case of cloud connection issues. 

It must be acknowledged that the edge node can have its drawbacks, making it unavailable for implementation for every 
user. The most serious of these is the requirement for technical equipment in medical institutions: namely, the availability 
of certain IT infrastructure, whose accessibility significantly exceeds that of cloud services. The presence of staff to 
maintain the network's functionality is also required. Additionally, the equipment needed to set up an edge node in the 
local network requires investments that may be unaffordable for small clinics in remote regions. 

If a medical institution can afford it, then among the potential advantages of using a cloud-edge approach are: data 
preprocessing (such as images, videos, signals), reduced delays and increased timeliness of clinical decisions, 
simplification of data security compliance, autonomy, and continuous operation in conditions of unstable internet 
connection, and the ability to process signals from wearable patient sensors and IoT devices in real time. 

In this chapter, we mentioned several diverse scenarios where, in our opinion, the implementation of an edge node could 
be beneficial. Currently, our team does not have the capability to conduct a thorough analysis and testing of each of these 
to describe in this study, as detailed examination of each case would require the volume of a separate publication. 
Nevertheless, we intend to test and implement some of the proposed scenarios in the future and evaluate the effectiveness 
of this implementation, both in terms of patient benefits and economic profitability and support for the medical institution. 

 
3.4. Architecture 

The hybrid technology, on which the CDSS is developed, features a distributed microservices architecture (see Fig. 1). 
The system's functionality is implemented through models (software computational agents) or knowledge bases and solvers 
(software solvers and knowledge bases for diagnostic/treatment/rehabilitation/screening protocols). Each CDSS task - 
whether it's the prognosis or diagnosis of a specific disease or complication - is handled by a separate microservice. To 
expand the functional tasks solved by the CDSS, new microservices need to be developed and integrated into the system 
following a standardized protocol, where the formalized description of the developed agent's interface is stored in the 
knowledge base.  



 
 

 
 

 
Figure 1. High-Level scheme of CDSS organization. 

 

If the functionality of the CDSS is expanded by a new scale, which is calculated by the solver, then to expand the 
functionality, it is necessary to update the knowledge base with the corresponding scale's calculation rules. Since access 
to the software computational agents is via HTTP, the execution of a microservice is possible on different computational 
nodes, allowing the CDSS to be distributed. The integration of knowledge bases, ontological solvers, and machine learning 
models makes the CDSS hybrid. The main components of the CDSS are: (1) System Services, ensuring the solution of 
integration tasks with the HIS (Universal Data Mapper), routing of requests (Message Routing), including to computational 
agents and intelligent solvers; (2) Knowledge Bases of Clinical Medicine, describing formalized medical protocols for 
diagnostics, prevention, treatment, clinical recommendations, directories of medicinal products, terms, formalized 
explanations (interpretation) of prognostic models and the results of their application, etc.; (3) Computational Agents 
(Microservice), implementing prognostic or diagnostic models of machine learning, algorithms for calculating scores or 
the probability of developing a fatal or non-fatal event; (4) Intelligent Problem Solver, through which some conditions are 
checked and actions are implemented according to the ontological tree of the knowledge base; (5) HIS with EHR database; 
(6) EHR databases, including those on which the prognostic models were trained and databases of research, training, and 
testing of models. 



 
 

 
 

3.5. Technologies 

Developed with the above-described concept of hybrid architecture in mind, CDSS must integrate various components 
distributed in the IT space. Therefore, the system has a primary method of message and data exchange - the Https protocol 
and JSON exchange format. The task of integrating CDSS with HIS can be accomplished in several ways. If HIS supports 
functionality extensions through a procedure initiated by a physician, this procedure must ensure the calling of HIS's server 
part and transmitting the message to CDSS through it. The technologies used for this are determined by the HIS being 
used. For managing knowledge bases, the IACPaaS cloud platform is used [21, 22]. The IACPaaS platform allows the 
creation of formalized knowledge bases, describing prognostic and diagnostic models, their interpretation, clinical 
recommendations, explanations, etc. The interaction of microservices is organized using the Kubernetes orchestrator 
(Fig.2).  

For brevity, only interaction with one medical institution is presented, but the system is designed for simultaneous 
interaction with multiple clients using different HIS and geographically distant from each other. In the diagram, the pods 
for the Edge node are shown in a simplified form (without highlighting microservices), and for the Worker node - in full. 

 
The main elements of the CDSS architecture at the low level are: 

Kubernetes cluster, including three typical nodes (nodes): Master - responsible for cluster configuration (contains 
control plane, etcd, and other standard Kubernetes environment components) and provides the main API Gateway for 
accessing CDSS; Worker - one or more identical nodes where microservices are placed in cells (pods) implementing 
machine learning prognostic models. The cluster must have at least one worker node; Edge - a variant of the worker node 
but located not in the cloud, but in the local network of a medical institution with its HIS. 

HIS server and client are implemented in the space of the medical institution. 

The IACPaaS server manages knowledge bases and includes a solver that ensures the traversal of the tree of the 
formalized knowledge base. If necessary, cluster services can access external knowledge bases, databases, or services. 

Important features of the Kubernetes orchestrator include ease of deployment and maintaining the functionality of 
containers with microservices. Most functions are managed by the control plane, located on the Master node. The control 
plane's functions include: managing the API server (API server provides a REST API for managing Kubernetes objects 
such as pods, services, and controllers), scaling and managing pods, managing nodes, configuration management, access 
management (including user and service authentication and authorization), and network management (Control plane allows 
managing the network in the Kubernetes cluster, including setting up and managing services and access to them), 
monitoring, and logging. To ensure CDSS performance, the Kubernetes tool - Ingress, can be used, allowing traffic routing 
and load balancing in the cluster, enabling the solution to scale with an increasing number of requests. Another way to 
increase performance is cached computations, stored outside containers in Persistent Volume (PV).  PV is an abstraction 
mechanism allowing to allocate some data storage space outside the pod but make it accessible within the pod. The cache 
of computations and the updated knowledge base placed in PV will not depend on the pod's lifecycle. 

 



 
 

 
 

 
Figure 2. Low-level scheme of CDSS organization. 

 



 
 

 
 

Each prognostic model integrated into the CDSS is implemented through a separate microservice on the worker-node. And 
since business logic requires not only computations but also interpretations of the obtained values, forming 
recommendations, and caching, the microservices responsible for these tasks are combined into pods. An unlimited number 
of nodes and pods with microservices, which are automatically maintained in a working state by the Kubernetes 
orchestrator, can be deployed within the cluster, ensuring the transparent scaling of the CDSS. Load balancing between 
pods and microservices on different nodes is done using the Ingress mechanism mentioned above. Scaling limitations are 
imposed by available resources (physical servers and computational power). However, increasing computing performance 
with simultaneous access by several clients, as well as increasing fault tolerance, can be critical in emergency medical 
practice situations. External request authorization to microservices in Kubernetes is organized using: Kubernetes RBAC 
(Role-Based Access Control), Istio, API Gateway, OAuth2. 

One of the features of the CDSS is the possibility to deploy it not only in the public cloud but also within the network of a 
medical institution, then all computations will be located in the Edge-node. The same microservice can exist in several 
instances with different IP addresses on one or more nodes, and the proxy service allows load balancing on the fly 
according to the round-robin principle between instances. Such configuration offers several significant advantages, the 
main ones being: increased data exchange speed (especially relevant for image processing), priority use of computational 
power (the node can be configured to process requests only from one HIS), increased fault tolerance in conditions of 
unstable internet connection (local network remains operational). The capabilities of Kubernetes node configuration allow 
making proxy services (K8S Services) available in the local network, where the physical server of the Edge node and the 
HIS server are located. 

CDSS microservices are grouped into cells. The following typical cells are assumed: 

Informational - informs the client about available prognostic models and their parameters, including predictors, conditions 
of application, location, rules of result interpretation, clinical recommendations, etc.; 

Transformation - transforms data received from HIS into a data representation format for the predictive model and the 
model's work result into a format understandable by HIS; 

Service implementing the predictive model (including computation, model explanation, and recommendations); 

Routing service for distributed computations. Preliminary data processing, transformations, and forecast or diagnosis 
calculations can be carried out both on the Edge-node within the network of a medical institution and in the public cloud. 
In some cases, this can be done automatically or be a condition of the agreement with the medical institution; 

The solver cell includes the solver service, services for finding explanations and recommendations. Service for 
synchronizing the knowledge base with an external source. It's important to note that the knowledge base and cache should 
be placed in a Persistent Volume to avoid losing relevance when restarting the pod.  

4. IMPLEMENTATION 

The development of the CDSS is being carried out for the Medical Center of the Far Eastern Federal University (FEFU). 
Several evolutionary stages were designated for the implementation of the CDSS. The main task of the first stage was to 
develop an MVP (Minimum Viable Product). At this stage, we do not use the Kubernetes orchestrator but focus on creating 
a viable system based on a microservices architecture. CDSS services are hosted on the FEFU server. The interaction 
services with CDSS are integrated into the HIS "1C Hospital". In the electronic medical record, a doctor can select available 
prognostic models. The code of the medical history/ambulatory card in the 1C HIS of the FEFU Medical Center is used 
by the CDSS as the primary key for a record about a patient within one episode for medical histories or about one patient 
- for an ambulatory card. Being a primary key - it must be unique for each data set. If an already existing code is transmitted 
to the CDSS services, the data is overwritten. Subsequently, the record can be found and processed by the user through the 
web interface and will be displayed in the journal. 



 
 

 
 

Several prognostic models have been implemented as microservices, some of which are widely used in clinical cardiology 
and cardiothoracic surgery (SCORE, SCORE 2, GRACE, EuroSCORE II, Diamond-Forrester, etc.), as well as proprietary 
machine learning models developed by the authors, implementing tasks such as predicting in-hospital mortality after 
cardiac surgery - coronary bypass and percutaneous coronary intervention, development of postoperative atrial fibrillation, 
and pre-test assessment of the likelihood of obstructive coronary artery disease. 

Each service model is represented in the knowledge base by several fields: service name, input and output parameters; 
normative values of input indicators (if available); URL link to the service; interpretations and a set of recommendations 
for doctors and patients, depending on the obtained results. 

For FEFU Medical Center specialists, a doctor's workstation and electronic documents of 1C HIS have been developed, 
where after the calculation is performed using prognostic models, the CDSS returns the results of the models, the 
interpretation of these results, and recommendations for reducing the risks of adverse events for this patient. 

A general example of system application might be the following algorithm: 

The HIS server, upon the doctor's request or regularly (using an agent), authenticates through the API Gateway in the 
CDSS and gets the current list of prognostic models available to the medical institution and doctor, as well as their 
parameters (predictors). 

The doctor in HIS selects the necessary model from the available ones and makes a request for a forecast or diagnosis 
assessment. 

The HIS server selects the necessary data (predictors) for the model's calculations from the EHR database. 

If HIS has access to the Edge-node, the request with data is sent to the local predictive model microservice located on this 
node, otherwise - the request is sent to the cloud, through the API Gateway, to one of the available Worker nodes, where 
the corresponding microservice is implemented. 

The external interface of the model microservice (Model gateway service) uses the parameter display service to transform 
data from EHR into the input parameters needed for the model's calculation. 

In the CDSS, there is a cache that saves the results of the model calculation and provides them upon a repeated request. 

After calculating the forecast result, explanations and recommendations corresponding to the calculations are added to the 
response. The choice of interpretations and explanations corresponding to the result is performed by the solver of the 
intelligent knowledge base. 

The model's response, if necessary, passes through the display service for transformation into a format understandable by 
HIS and, together with other data, is returned to HIS. 

Based on this algorithm, we propose a possible scenario for everyday practice. 

Scenario: A patient with suspected coronary heart disease visits a cardiologist at the FEFU Medical Center. The physician 
decides to use the CDSS to assess the risk and determine the optimal treatment strategy. 

Data Request: The physician in HIS selects the SCORE 2 model to assess the patient's condition. After selecting the 
model, the HIS server automatically collects the necessary patient data from the EHR. 

Processing the Request: Since an edge-node is available in the medical center, the request with data is sent to the local 
SCORE 2 microservice installed on this node. 

Forecast Calculation: The model microservice processes the data, using the external interface to transform them into the 
required format. The calculation results are cached to increase the efficiency of future requests. 

Interpretation and Recommendations: The obtained forecast is accompanied by explanations and recommendations 
prepared by the solver of the intelligent knowledge base of the CDSS. 



 
 

 
 

Providing Results to the physician: The results, along with interpretations and recommendations, are transmitted back 
to HIS, where they are displayed in a format understandable to the doctor. 

Application of Recommendations and Decisions: Based on his own knowledge and the decision proposed by the CDSS, 
which matches the physician's expectations, the doctor confidently diagnoses the disease in the patient and prescribes the 
most effective treatment, in his opinion. 

Application Results: The treatment proves effective, and the patient's condition stabilizes. 

This slightly naive scenario is intended to express our hope that future research on CDSS integration will demonstrate 
rapid and accurate risk assessment and treatment recommendations, the improvement of the timeliness and quality of 
medical care, the reduction of the likelihood of errors and improvement of the outcomes for patients. 

5. CHALLENGES AND FUTURE DIRECTIONS 

In the course of developing the CDSS for the Medical Center, we encountered a number of technical and clinical challenges 
that prompted research into improving the architecture of the CDSS. The key aspects are: more accurate forecasting; better 
explanation of decisions and recommendations; organization of work of several teams conducting parallel development, 
implementation, and testing of new machine learning models; ensuring data security and confidentiality; and connecting 
new medical institutions to the system. 

The lack of unified standards for HIS creates difficulties in integrating CDSS with existing solutions in medical institutions. 
The full implementation of a service to translate requests from HIS to a microservice remains a prospective task. 

Scalability and performance of our system also require attention. At present, the number of users is minimal, as is the 
number of patients. We are confident that the scalability we are building into the CDSS will cope with the increasing load, 
but testing in real-life conditions remains ahead. 

From the clinical practice perspective, an important aspect is improving the accuracy and reliability of prognostic models. 
Another task is working with medical staff: training in the use of CDSS, gathering feedback, improving the interface, 
evaluating the understandability and acceptability of the proposed explanations, their impact on decisions made by doctors 
and medical staff, and most importantly - the benefits for patients. 

We are focusing on developing more sophisticated methods of explaining prognostic models in medicine in general, and 
cardiovascular diseases in particular. As mentioned earlier, we are also facing requests for implementing AI and XAI 
methods in other everyday diagnostic tasks, whose effective resolution requires a high-quality implementation of cloud-
edge computing. 

6. CONCLUSION 

In this study, the authors proposed the concept and architecture of a hybrid CDSS, integrating machine learning models 
and intelligent knowledge bases that describe methods for assessing cardiovascular risks, their explanations, and 
recommendations for limitation. The microservice approach provides flexibility, scalability, and independence from the 
used hardware resources. The application of Edge computing optimizes data processing and reduces server load. The use 
of cloud technologies and containerization of services ensures the system's rapid adaptation to the changing conditions and 
needs of medical institutions. Formalized knowledge bases with a synonym mechanism help solve the issues of using 
various terms in HIS. The system is being developed using an iterative approach. Future stages include expanding the 
available pool of prognostic models, enhancing the architecture through the use of orchestrators, and integration with new 
HIS. The development experience of this system underscores the necessity of an interdisciplinary approach based on the 
cooperation of specialists in information technology, machine learning, clinical medicine, and medical institution 
management. This is a key factor in creating innovative solutions for implementing digital medicine projects. 



 
 

 
 

7. DISCUSSION 

In this research, we focused on the development of the hybrid CDSS architecture for the Medical Center of the Far Eastern 
Federal University. Special attention was given to XAI methods, where hybridity plays a key role, as well as the use of a 
microservice architecture with Edge computing nodes, and exploring the potential opened by this approach. This 
innovative construction not only ensures flexibility and scalability but also lays the foundation for future implementation 
of technologies such as Kubernetes to improve service management and deployment. 

It's important to note that at this stage, our system is in its initial implementation phase - more of a prototype than a fully-
fledged system. We continue to work on collecting and analyzing data to evaluate the effectiveness of using the prototype 
in the FEFU Medical Center. These data will help us improve the system and adapt it to the real conditions of clinical 
practice. 

Currently, our main focus is on refining the CDSS architecture, including planning the implementation of an orchestrator 
and further development of microservices. As the functionality expands and the number of integrated machine learning 
models increases, we expect significant improvement in system performance and capabilities. 

In conclusion, the use of the existing CDSS prototype in the FEFU Medical Center and research into potential directions 
in architecture design confirms the importance of hybrid systems and microservice architecture in modern digital medicine. 

Focusing primarily on cardiovascular diseases, our CDSS provides an opportunity for teams of scientists working in other 
areas of medical diagnostics to join. This project becomes an example of how technological innovations can contribute to 
the development of the medical industry, improve the quality of medical care, and increase the efficiency of clinical 
decisions. 
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