ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЗАДАЧИ СОПРОВОЖДЕНИЯ ТРАЕКТОРИИ ДВИЖУЩЕГОСЯ ОБЪЕКТА

М.В. Трофимов, аспирант, ассистент кафедры ИСПИ Д.С. Шматков, III курс, Институт информатики, инноваций и бизнес-систем В.М. Гриняк - научный руководитель, канд. техн. наук, доцент кафедры ИСПИ

ФГБОУ ВПО Владивостокский государственный университет экономики и сервиса, Владивосток

введение

Современные береговые системы управления движением судов (СУДС) представляют собой наукоёмкие и сложные в техническом и организационном отношении предприятия [1, 2, 3]. В настоящее время под такими системами принято понимать совокупность средств обнаружения, измерения, передачи и обработки данных, анализа, интерпретации, визуализации информации и выработки управляющих решений.

При всей многоаспектности проблем, сопутствующих построению современных СУДС, функциональным ядром таких систем являются их навигационные функции, т.е. функции, решающие задачу определения траекторий объектов, находящихся в зоне ответственности. Несмотря на развитость современных средств глобальной спутниковой навигации главным информационным элементом СУДС на море, способным обеспечить надёжность и автономность их функционирования, являются двухкоординатные радиолокационные станции (РЛС) кругового обзора.

Согласно современным представлениям основной технологический цикл решения навигационных задач последовательно включает в себя [4, 5]:

- оцифровку измерительной информации РЛС и «введение» её в память ЭВМ;
- обнаружение, захват и сопровождение объектов;
- наблюдение объектов и прогнозирование опасных ситуаций;
- визуализацию навигационной информации.

Под оцифровкой измерительной информации в данном случае понимается преобразование радиолокационного эхо-сигнала с помощью аналого-цифровых устройств и представление радиолокационного образа зоны ответственности в виде матрицы амплитуд.

Обнаружение цели — это выделение полезного отражённого радиосигнала на фоне помех и его интерпретация как свидетельства присутствия в той или иной области навигационного пространства интересующего систему физического объекта.

Сопровождение объекта - динамический процесс соотнесения условной точки, принятой за объект, с радиолокационным изображением объекта. Инициация этого процесса называется захватом объекта, непроизвольное (аварийное) прекращение такого процесса - срывом сопровождения (срывом захвата). С процессом сопровождения тесно связано понятие строба, а именно - с тем обстоятельством, что протяжённый физический объект необходимо отождествить с точкой. Строб - область радиолокационного образа, используемая для преобразования в точку, отождествляемую затем с измеренными координатами объекта. Процедура такого преобразования называется стробированием. В простейшем варианте стробирование представляет собой определение «центра масс» амплитуд отраженного сигнала в области строба; для описания линейных размеров этой области принят термин «ширина строба». Главное назначение совокупности процедур обнаружения, захвата, стробирования и сопровождения - формализация измерительной информации, формирование измерений координат движущегося объекта на протяжении всей его траектории [6].

Наблюдение объекта - процедура оценки собственно навигационных параметров объекта, в частности, координат и их производных. В отличие от сопровождения главный смысл, который несёт в себе процедура наблюдения - определение характеристик объекта, недоступных непосредственному измерению (например, скорости). Основным назначением получаемых при этом об объекте данных является их явное или неявное использование для прогнозирования навигационной обстановки в зоне ответственности СУДС, выработки тревожных сигналов при опасном сближении судов [3, 7].

Визуализация навигационной информации - совокупность процессов, обеспечивающих интерфейс центрального элемента системы – оператора.

Основной проблемой, возникающей при сопровождении объекта (решению именно этой задачи посвящена настоящая работа) является обеспечение устойчивости этого процесса по отношению к срыву. В настоящей работе представлены результаты исследования поведения алгоритма сопровождения с различной степенью фильтрации на траекториях характеризующихся различной степенью маневренности объекта. За основу исследования взята работа, рассматривающая модель задачи сопровождения, основанную на традиционных алгоритмах оптимальной фильтрации [8].

модельные представления и постановка задачи

Рассмотрим следующую модель движения объекта

$$x(k+1) = x(k) + v_x(k)\tau + q_x(k),$$

$$y(k+1) = y(k) + v_y(k)\tau + q_y(k)$$
(1)

здесь k - идентификатор (порядковый номер) момента времени, x(k), y(k) - координаты объекта в момент времени t_k ; $v_x(k)$, $v_y(k)$ - компоненты вектора скорости объекта, $q_x(k)$, $q_y(k)$ - компоненты вектора случайных немоделируемых параметров движения, τ - период оценивания, так что $\tau = t_{k+1} - t_k$.

Пусть измеряемыми параметрами являются декартовы координаты объекта. Тогда модель рассматриваемой задачи можно представить следующим дискретным матричным уравнением «состояние-измерение»

$$x_{k+1} = \Phi x_k + q_k,$$

$$z_k = Hx_k + r_k.$$
(2)

Здесь $x_k = (x(k), v_x(k), y(k), v_y(k))^T$ - вектор состояния объекта, включающий его координаты и их производные (Т – символ транспонирования), q_k - вектор немоделируемых параметров, z_k - вектор измерений, r_k - вектор погрешностей измерений. Имея в виду (1), матричные коэффициенты Φ и H системы уравнений (2) равны, соответственно

$$\Phi = \begin{vmatrix} 1 & \tau & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \tau \\ 0 & 0 & 0 & 1 \end{vmatrix}, \ H = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}.$$

Модель оценивания вектора состояния x_k по измерениям z_k может быть представлена следующим уравнением

$$\hat{x}_{k+1} = \Phi \hat{x}_k + K(z_{k+1} - H\hat{x}_{k+1}), \tag{3}$$

Здесь \hat{x}_k - оценка вектора состояния, K - матричный коэффициент.

Известно множество подходов к выбору матрицы K. В настоящей работе выбор сделан в пользу популярного в практических приложениях $\alpha-\beta$ алгоритма, основное достоинство которого — низкие требования к вычислительным ресурсам [9]. В этом алгоритме матрица K имеет вид

$$K = \begin{bmatrix} \alpha & 0 \\ \beta/\tau & 0 \\ 0 & \alpha \\ 0 & \beta/\tau \end{bmatrix}.$$

Сходимость алгоритма обеспечивается выполнением условия $0 < \alpha \le 1$, $0 < \beta \le 1$. Коэффициенты α и β выбираются исходя из требований чувствительности алгоритма к немоделируемым манёврам судна q_k и ошибкам измерений r_k . Показано [10], что соотношение коэффициентов $\beta = \alpha^2/(2-\alpha)$ является оптимальным.

Примем, что алгоритм (3) может быть реализован с коэффициентами α и β , значения которых выбираются по следующему правилу:

$$\alpha_m = \frac{2(2m+1)}{(m+2)(m+1)}, \ \beta_m = \frac{6}{(m+2)(m+1)},$$

где m - целое положительное число, характеризующее степень фильтрации алгоритма (3). При увеличении m коэффициенты α и β асимптотически уменьшаются до 0, поэтому алгоритм (3), реализованный с большим m будет успешно сопровождать объекты, движущиеся прямолинейно и равномерно, но он не сможет быть использован для сопровождения маневрирующих объектов. Задача сопровождения траектории сводится, таким образом, к проблеме выбора такой степени фильтрации m, которая реализует сопровождение конкретной траектории движения наилучшим образом (с наименьшей погрешностью).

результаты численного моделирования

В работе были смоделированы траектории движения объектов, характеризующиеся различной степенью маневренности, на которых исследовалось поведение алгоритма сопровождения (3) с различной степенью фильтрации m. Путем анализа средней погрешности оценивания координат объекта была получена информация о значениях m, реализующих наилучшее сопровождение того или иного участка траектории.

На рисунке 1 показано качество сопровождения маневрирующего объекта по мере его движения. До момента времени t=100 секунд объект движется прямолинейно и равномерно со скоростью 3 м/с, а затем совершает поворот с радиусом циркуляции 300 метров и завершает его в момент времени t=300 секунд. Затем объект продолжает движение прямолинейно и равномерно. При моделировании было принято, что погрешность измерения координат (величина r_k) равномерно распределена в интервале [-5, 5] метров. Сопровождение объекта происходит алгоритмом (3) с различными значениями m (от 2 до 10). Здесь δ - среднее (оцененное по 5000 реализациям) расстояние между точками истинного и оцененного положения объекта. Из рисунка видно, что наименьшая погрешность оценивания координат объекта при манёвре у алгоритма со степенью фильтрации m=5, а наименьшая погрешность при прямолинейном и равномерном движении со степенью фильтрации m=10. Алгоритм быстро реагирует на изменение характера движения судна (начало и окончание маневрирования).

На рисунке 2 изображена соответствующая рисунку 1 траектория движения объекта, на которой цветом и стрелками показаны значения m, обеспечивающие наилучшее сопровождение. Из рисунка видно, что имеется четкая зависимость между характеристиками маневренности объекта и оптимальной степенью фильтрации алгоритма. Появление коротких участков траектории со значением m, отличающимся на единицу от применяемого на соседних участках обусловлено случайными выбросами ошибок измерения.

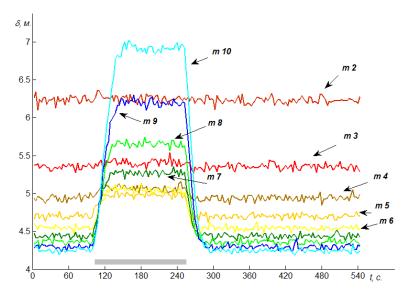


Рис 1. Графики средней погрешности оценивания координат при сопровождении маневрирующего объекта алгоритмом с различной степенью фильтрации, штриховой линией по оси абсцисс показан участок маневрирования судна

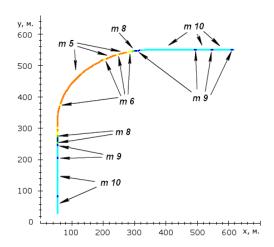


Рис 2. Траектория движения объекта и соответствующие ей значения m

заключение

Известные подходы к повышению точности сопровождения маневрирующих объектов базируются на явном или неявном обнаружении начала и окончания маневра и соответствующем изменении параметров алгоритма сопровождения. Траектория объекта описывается при этом несколькими моделями. Сущность сопровождения состоит в этом случае в анализе гипотез о возможных моделях движения объекта, а сами алгоритмы называются многомодельными [8].

Перспективной методикой построения алгоритма выбора оптимальной из множества моделей движения является использование современных интеллектуальных систем, в основу работы которых положена идея обучения. Обучающая выборка при этом должна нести информацию о параметрах алгоритма сопровождения, оптимальных для той или иной модели движения объекта. Настоящее исследование демонстрирует возможность формирования такой обучающей выборки для многомодельных алгоритмов сопровождения, основанных на реализации α - β фильтра с различной степенью фильтрации.

Результаты работы ориентированы на расширение функций современных систем управления движением судов.

- 1. Модеев Р.Н. СУДС ядро информационной системы порта // Морские порты. 2010. №8. С. 27-29.
 - 2. OAO Hopфec [Электронный ресурс] Режим доступа http://www.norfes.ru/
- 3. Юдин Ю.И. Механизм предвидения в организационно-технических системах управления судовыми ключевыми операциями // Наука и техника транспорта. 2007. N1. C. 74-81.
- 4. Девятисильный А.С., Дорожко В.М., Гриняк В.М. и др. Система экспертных оценок состояния безопасности на морских акваториях // Информационные технологии. 2004. №11. С. 48-53.
- 5. Девятисильный А.С., Дорожко В.М., Лоскутов Н.В. Информационные модели систем управления безопасностью движения в насыщенных судопотоках // <u>Проблемы безопасности и чрезвычайных ситуаций</u>. <u>2007</u>. <u>№ 1</u>. С. 114-128.
- 6. Кузьмин С. 3. Основы теории цифровой обработки радиолокационной информации. М.: Сов. радио, 1974. 431 с.
- 7. Гриняк В.М., Головченко Б.С., Малько В.Н. Распознавание опасных ситуаций системами управления движением судов // Транспорт: наука, техника, управление. 2011. №8. С. 42-45.
- 8. Гриняк В.М., Трофимов М.В. Нечеткое сопровождение траектории движения судна // Журнал университета водных коммуникаций. 2012. №1. С. 119-124.
- 9. Тихонов В. И., Теплинский И. С. Квазиоптимальное слежение за маневрирующими объектами // Радиотехника и электроника. 1989. Т.34. №4. С. 792-797.
- 10. Benedict T. R., Bordner G.R. Synthesis of an optimal set of radar track-while-scan smoothing equations// IRE Trans, on AC-1, July 1962, p. 27-32.