
Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 1

Interfacing the Standard Parallel Port
Disclaimer : While every effort has been made to make sure the information in this document is correct, the author can not be liable
for any damages whatsoever for loss relating to this document. Use this information at your own risk.

Table of Contents

Introduction to Parallel Ports Page 1

Hardware Properties Page 2

Centronics? Page 4

Port Addresses Page 4

Software Registers - Standard Parallel Port (SPP) Page 6

Bi-directional Ports Page 8

Using The Parallel Port to Input 8 Bits. Page 9

Nibble Mode Page 11

Using the Parallel Port's IRQ Page 12

Parallel Port Modes in BIOS Page 14

Parallel Port Modes and the ECP’s Extended Control Register Page 15

Introduction to Parallel Ports

The Parallel Port is the most commonly used port for interfacing home made projects. This
port will allow the input of up to 9 bits or the output of 12 bits at any one given time, thus requiring
minimal external circuitry to implement many simpler tasks. The port is composed of 4 control lines,
5 status lines and 8 data lines. It's found commonly on the back of your PC as a D-Type 25 Pin female
connector. There may also be a D-Type 25 pin male connector. This will be a serial RS-232 port and
thus, is a totally incompatible port.

Newer Parallel Port’s are standardized under the IEEE 1284 standard first released in 1994.
This standard defines 5 modes of operation which are as follows,

1. Compatibility Mode.
2. Nibble Mode. (Protocol not Described in this Document)
3. Byte Mode. (Protocol not Described in this Document)
4. EPP Mode (Enhanced Parallel Port).
5. ECP Mode (Extended Capabilities Port).

The aim was to design new drivers and devices which were compatible with each other and

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 2

also backwards compatible with the Standard Parallel Port (SPP). Compatibility, Nibble & Byte
modes use just the standard hardware available on the original Parallel Port cards while EPP & ECP
modes require additional hardware which can run at faster speeds, while still being downwards
compatible with the Standard Parallel Port.

Compatibility mode or "Centronics Mode" as it is commonly known, can only send data in the
forward direction at a typical speed of 50 kbytes per second but can be as high as 150+ kbytes a
second. In order to receive data, you must change the mode to either Nibble or Byte mode. Nibble
mode can input a nibble (4 bits) in the reverse direction. E.g. from device to computer. Byte mode
uses the Parallel's bi-directional feature (found only on some cards) to input a byte (8 bits) of data in
the reverse direction.

Extended and Enhanced Parallel Ports use additional hardware to generate and manage
handshaking. To output a byte to a printer (or anything in that matter) using compatibility mode, the
software must.

1. Write the byte to the Data Port.

2. Check to see is the printer is busy. If the printer is busy, it will not accept any data, thus any
data which is written will be lost.

3. Take the Strobe (Pin 1) low. This tells the printer that there is the correct data on the data
lines. (Pins 2-9)

4. Put the strobe high again after waiting approximately 5 microseconds after putting the strobe
low. (Step 3)

This limits the speed at which the port can run at. The EPP & ECP ports get around this by
letting the hardware check to see if the printer is busy and generate a strobe and /or appropriate
handshaking. This means only one I/O instruction need to be performed, thus increasing the speed.
These ports can output at around 1-2 megabytes per second. The ECP port also has the advantage of
using DMA channels and FIFO buffers, thus data can be shifted around without using I/O
instructions.

Hardware Properties

On the next page is a table of the "Pin Outs" of the D-Type 25 Pin connector and the
Centronics 34 Pin connector. The D-Type 25 pin connector is the most common connector found on
the Parallel Port of the computer, while the Centronics Connector is commonly found on printers. The
IEEE 1284 standard however specifies 3 different connectors for use with the Parallel Port. The first
one, 1284 Type A is the D-Type 25 connector found on the back of most computers. The 2nd is the
1284 Type B which is the 36 pin Centronics Connector found on most printers.

IEEE 1284 Type C however, is a 36 conductor connector like the Centronics, but smaller. This
connector is claimed to have a better clip latch, better electrical properties and is easier to assemble. It
also contains two more pins for signals which can be used to see whether the other device connected,

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 3

has power. 1284 Type C connectors are recommended for new designs, so we can look forward on
seeing these new connectors in the near future.

Pin No (D-
Type 25)

Pin No
(Centronics)

SPP Signal Direction
In/out

Register Hardware
Inverted

1 1 nStrobe In/Out Control Yes
2 2 Data 0 Out Data
3 3 Data 1 Out Data
4 4 Data 2 Out Data
5 5 Data 3 Out Data
6 6 Data 4 Out Data
7 7 Data 5 Out Data
8 8 Data 6 Out Data
9 9 Data 7 Out Data
10 10 nAck In Status
11 11 Busy In Status Yes
12 12 Paper-Out

PaperEnd
In Status

13 13 Select In Status
14 14 nAuto-Linefeed In/Out Control Yes
15 32 nError / nFault In Status
16 31 nInitialize In/Out Control
17 36 nSelect-Printer

nSelect-In
In/Out Control Yes

18 - 25 19-30 Ground Gnd

Table 1. Pin Assignments of the D-Type 25 pin Parallel Port Connector.

The above table uses "n" in front of the signal name to denote that the signal is active low. e.g.
nError. If the printer has occurred an error then this line is low. This line normally is high, should the
printer be functioning correctly. The "Hardware Inverted" means the signal is inverted by the Parallel
card's hardware. Such an example is the Busy line. If +5v (Logic 1) was applied to this pin and the
status register read, it would return back a 0 in Bit 7 of the Status Register.

The output of the Parallel Port is normally TTL logic levels. The voltage levels are the easy
part. The current you can sink and source varies from port to port. Most Parallel Ports implemented in
ASIC, can sink and source around 12mA. However these are just some of the figures taken from Data
sheets, Sink/Source 6mA, Source 12mA/Sink 20mA, Sink 16mA/Source 4mA, Sink/Source 12mA.
As you can see they vary quite a bit. The best bet is to use a buffer, so the least current is drawn from
the Parallel Port.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 4

Centronics?

Centronics is an early standard for transferring data from a host to the printer. The majority of
printers use this handshake. This handshake is normally implemented using a Standard Parallel Port
under software control. Below is a simplified diagram of the ‘Centronics’ Protocol.

Data is first applied on the Parallel Port pins 2 to 7. The host then checks to see if the printer is
busy. i.e. the busy line should be low. The program then asserts the strobe, waits a minimum of 1µS,
and then de-asserts the strobe. Data is normally read by the printer/peripheral on the rising edge of the
strobe. The printer will indicate that it is busy processing data via the Busy line. Once the printer has
accepted data, it will acknowledge the byte by a negative pulse about 5µS on the nAck line.

Quite often the host will ignore the nAck line to save time. Latter in the Extended Capabilities
Port, you will see a Fast Centronics Mode, which lets the hardware do all the handshaking for you. All
the programmer must do is write the byte of data to the I/O port. The hardware will check to see if the
printer is busy, generate the strobe. Note that this mode commonly doesn’t check the nAck either.

Port Addresses

The Parallel Port has three commonly used base addresses. These are listed in table 2, below.
The 3BCh base address was originally introduced used for Parallel Ports on early Video Cards. This
address then disappeared for a while, when Parallel Ports were later removed from Video Cards. They
has now reappeared as an option for Parallel Ports integrated onto motherboards, upon which their
configuration can be changed using BIOS.

LPT1 is normally assigned base address 378h, while LPT2 is assigned 278h. However this
may not always be the case as explained later. 378h & 278h have always been commonly used for
Parallel Ports. The lower case h denotes that it is in hexadecimal. These addresses may change from
machine to machine.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 5

Address Notes:

3BCh - 3BFh Used for Parallel Ports which were incorporated in to
Video Cards and now, commonly an option for Ports
controlled by BIOS. - Doesn't support ECP addresses.

378h - 37Fh Usual Address For LPT 1

278h - 27Fh Usual Address For LPT 2

Table 2 Port Addresses

When the computer is first turned on, BIOS (Basic Input/Output System) will determine the
number of ports you have and assign device labels LPT1, LPT2 & LPT3 to them. BIOS first looks at
address 3BCh. If a Parallel Port is found here, it is assigned as LPT1, then it searches at location 378h.
If a Parallel card is found there, it is assigned the next free device label. This would be LPT1 if a card
wasn't found at 3BCh or LPT2 if a card was found at 3BCh. The last port of call, is 278h and follows
the same procedure than the other two ports. Therefore it is possible to have a LPT2 which is at 378h
and not at the expected address 278h.

What can make this even confusing, is that some manufacturers of Parallel Port Cards, have
jumpers which allow you to set your Port to LPT1, LPT2, LPT3. Now what address is LPT1? - On the
majority of cards LPT1 is 378h, and LPT2, 278h, but some will use 3BCh as LPT1, 378h as LPT1 and
278h as LPT2. Life wasn’t meant to be easy.

The assigned devices LPT1, LPT2 & LPT3 should not be a worry to people wishing to
interface devices to their PC's. Most of the time the base address is used to interface the port rather
than LPT1 etc. However should you want to find the address of LPT1 or any of the Line PrinTer
Devices, you can use a lookup table provided by BIOS. When BIOS assigns addresses to your printer
devices, it stores the address at specific locations in memory, so we can find them.

Start Address Function

0000:0408 LPT1's Base Address

0000:040A LPT2's Base Address

0000:040C LPT3's Base Address

0000:040E LPT4's Base Address (Note 1)

Table 3 - LPT Addresses in the BIOS Data Area

Note 1 : Address 0000:040E in the BIOS Data Area may be used as the Extended Bios Data Area in
PS/2 and newer Bioses, and thus this field may be invalid.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 6

The above table, table 3, shows the address at which we can find the Printer Port's addresses in
the BIOS Data Area. Each address will take up 2 bytes. The following sample program in C, shows
how you can read these locations to obtain the addresses of your printer ports.

#include <stdio.h>
#include <dos.h>

void main(void)
{
 unsigned int far *ptraddr; /* Pointer to location of Port Addresses */
 unsigned int address; /* Address of Port */
 int a;

 ptraddr=(unsigned int far *)0x00000408;

 for (a = 0; a < 3; a++)
 {
 address = *ptraddr;
 if (address == 0)

 printf("No port found for LPT%d \n",a+1);
 else

 printf("Address assigned to LPT%d is %Xh\n",a+1,address);
 *ptraddr++;
 }
}

Software Registers - Standard Parallel Port (SPP)

Offset Name Read/Write Bit No. Properties
Base + 0 Data Port Write (Note-1) Bit 7 Data 7 (Pin 9)

Bit 6 Data 6 (Pin 8)
Bit 5 Data 5 (Pin 7)
Bit 4 Data 4 (Pin 6)
Bit 3 Data 3 (Pin 5)
Bit 2 Data 2 (Pin 4)
Bit 1 Data 1 (Pin 3)
Bit 0 Data 0 (Pin 2)

Table 4 Data Port

Note 1 : If the Port is bi-directional then Read and Write Operations can be performed on the Data
Register.

The base address, usually called the Data Port or Data Register is simply used for outputting
data on the Parallel Port's data lines (Pins 2-9). This register is normally a write only port. If you read
from the port, you should get the last byte sent. However if your port is bi-directional, you can receive
data on this address. See Bi-directional Ports for more detail.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 7

Base + 1 Status Port Read Only Bit 7 Busy
Bit 6 Ack
Bit 5 Paper Out
Bit 4 Select In
Bit 3 Error
Bit 2 IRQ (Not)
Bit 1 Reserved
Bit 0 Reserved

Table 5 Status Port

The Status Port (base address + 1) is a read only port. Any data written to this port will be
ignored. The Status Port is made up of 5 input lines (Pins 10,11,12,13 & 15), a IRQ status register and
two reserved bits. Please note that Bit 7 (Busy) is a active low input. E.g. If bit 7 happens to show a
logic 0, this means that there is +5v at pin 11. Likewise with Bit 2. (nIRQ) If this bit shows a '1' then
an interrupt has not occurred.

Base + 2 Control Read/Write Bit 7 Unused
Port Bit 6 Unused

Bit 5 Enable bi-directional Port
Bit 4 Enable IRQ Via Ack Line
Bit 3 Select Printer
Bit 2 Initialize Printer (Reset)
Bit 1 Auto Linefeed
Bit 0 Strobe

Table 6 Control Port

 The Control Port (base address + 2) was intended as a write only port. When a printer is
attached to the Parallel Port, four "controls" are used. These are Strobe, Auto Linefeed, Initialize and
Select Printer, all of which are inverted except Initialize.

The printer would not send a signal to initialize the computer, nor would it tell the computer to
use auto linefeed. However these four outputs can also be used for inputs. If the computer has placed a
pin high (e.g. +5v) and your device wanted to take it low, you would effectively short out the port,
causing a conflict on that pin. Therefore these lines are "open collector" outputs (or open drain for
CMOS devices). This means that it has two states. A low state (0v) and a high impedance state (open
circuit).

Normally the Printer Card will have internal pull-up resistors, but as you would expect, not all
will. Some may just have open collector outputs, while others may even have normal totem pole
outputs. In order to make your device work correctly on as many Printer Ports as possible, you can use
an external resistor as well. Should you already have an internal resistor, then it will act in Parallel
with it, or if you have Totem pole outputs, the resistor will act as a load.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 8

An external 4.7k resistor can be used to pull the pin high. I wouldn't use anything lower, just in
case you do have an internal pull up resistor, as the external resistor would act in parallel giving
effectively, a lower value pull up resistor. When in high impedance state the pin on the Parallel Port is
high (+5v). When in this state, your external device can pull the pin low and have the control port
change read a different value. This way the 4 pins of the Control Port can be used for bi-directional
data transfer. However the Control Port must be set to xxxx0100 to be able to read data, that is all
pins to be +5v at the port so that you can pull it down to GND (logic 0).

Bits 4 & 5 are internal controls. Bit four will enable the IRQ (See Using the Parallel Ports
IRQ) and Bit 5 will enable the bi-directional port meaning that you can input 8 bits using (DATA0-7).
This mode is only possible if your card supports it. Bits 6 & 7 are reserved. Any writes to these two
bits will be ignored.

Bi-directional Ports

The schematic diagram below, shows a simplified view of the Parallel Port's Data Register.
The original Parallel Port card's implemented 74LS logic. These days all this is crammed into one
ASIC, but the theory of operation is still the same.

The non bi-directional ports were manufactured with the 74LS374's output enable tied
permanent low, thus the data port is always output only. When you read the Parallel Port's data
register, the data comes from the 74LS374 which is also connected to the data pins. Now if you can
overdrive the '374 you can effectively have a Bi-directional Port. (or a input only port, once you blow
up the latches output!)

What is very concerning is that people have actually done this. I've seen one circuit, a scope
connected to the Parallel Port distributed on the Internet. The author uses an ADC of some type, but
finds the ADC requires transistors on each data line, to make it work! No wonder why. Others have
had similar trouble, the 68HC11 cannot sink enough current (30 to 40mA!)

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 9

Bi-directional ports use Control Bit 5 connected to the 374's OE so that it's output drivers can
be turned off. This way you can read data present on the Parallel Port's Data Pins, without having bus
conflicts and excessive current drains.

Bit 5 of the Control Port enables or disables the bi-directional function of the Parallel Port.
This is only available on true bi-directional ports. When this bit is set to one, pins 2 to 9 go into high
impedance state. Once in this state you can enter data on these lines and retrieve it from the Data Port
(base address). Any data which is written to the data port will be stored but will not be available at the
data pins. To turn off bi-directional mode, set bit 5 of the Control Port to '0'.

However not all ports behave in the same way. Other ports may require setting bit 6 of the
Control Port to enable Bi-directional mode and setting of Bit 5 to dis-enable Bi-directional mode,
Different manufacturers implement their bi-directional ports in different ways. If you wish to use your
Bi-directional port to input data, test it with a logic probe or multimeter first to make sure it is in bi-
directional mode.

Using The Parallel Port to Input 8 Bits.

If your Parallel Port doesn't support bi-directional mode, don't despair. You can input a
maximum of 9 bits at any one given time. To do this you can use the 5 input lines of the Status Port
and the 4 inputs (open collector) lines of the Control Port.

The inputs to the Parallel Port has be chosen as such, to make life easier for us. Busy just
happens to be the MSB (Bit 7) of the Status Port, then in ascending order comes Ack, Paper Out and
Select, making up the most significant nibble of the Control Port. The Bars are used to represent
which inputs are Hardware inverted, i.e. +5v will read 0 from the register, while GND will read 1. The
Status Port only has one inverted input.

The Control port is used to read the least significant nibble. As described before, the control
port has open collector outputs, i.e. two possible states, high impedance and GND. If we connect our
inputs directly to the port (For example an ADC0804 with totem pole outputs) , a conflict will result if
the input is high and the port is trying to pull it down. Therefore we use open collector inverters.

However this is not always entirely necessary. If we were connecting single pole switches to
the port with a pull up resistor, then there is no need to bother with this protection. Also if your
software initializes the control port with xxxx0100 so that all the pins on the control port are high,

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 10

then it may be unnecessary. If however you don’t bother and your device is connected to the Parallel
Port before your software has a chance to initialize then you may encounter problems.

Another problem to be aware of is the pull up resistors on the control port. The average pull-
up resistor is 4.7k. In order to pull the line low, your device will need to sink 1mA, which some low
powered devices may struggle to do. Now what happens if I suggest that some ports have 1K pull up
resistors? Yes, there are such cards. Your device now has to sink 5mA. More reason to use the open
collector inverters.

Open collector inverters were chosen over open collector buffers as they are more popular, and
thus easier to obtain. There is no reason, however why you can’t use them. Another possibility is to
use transistors.

The input, D3 is connected via the inverter to Select Printer. Select Printer just happens to be
bit 3 of the control port. D2, D1 & D0 are connected to Init, Auto linefeed and strobe, respectively to
make up the lower nibble. Now this is done, all we have to do is assemble the byte using software.
The first thing we must do is to write xxxx0100 to the Control Port. This places all the control port
lines high, so they can be pulled down to input data.

outportb(CONTROL, inportb(CONTROL) & 0xF0 | 0x04);

Now that this is done, we can read the most significant nibble. This just happens to be the
most significant nibble of the status port. As we are only interested in the MSnibble we will AND the
results with 0xF0, so that the LSnibble is clear. Busy is hardware inverted, but we won’t worry about
it now. Once the two bytes are constructed, we can kill two birds with one stone by toggling Busy and
Init at the same time.

a = (inportb(STATUS) & 0xF0); /* Read MSnibble */

We can now read the LSnibble. This just happens to be LSnibble of the control port - How
convenient! This time we are not interested with the MSnibble of the port, thus we AND the result
with 0x0F to clear the MSnibble. Once this is done, it is time to combine the two bytes together. This
is done by OR’ing the two bytes. This now leaves us with one byte, however we are not finished yet.
Bits 2 and 7 are inverted. This is overcome by XOR’ing the byte with 0x84, which toggles the two
bits.

a = a |(inportb(CONTROL) & 0x0F); /* Read LSnibble */

a = a ^ 0x84; /* Toggle Bit 2 & 7 */

Note: Some control ports are not open collector, but have totem pole outputs. This is
also the case with EPP and ECP Ports. Normally when you place a Parallel Port in ECP or EPP
mode, the control port becomes totem pole outputs only. Now what happens if you connect your
device to the Parallel Port in this mode? Therefore, in the interest of portability I recommend
using the next circuit, reading a nibble at a time.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 11

Nibble Mode

Nibble mode is the preferred way of reading 8 bits of data without placing the port in reverse
mode and using the data lines. Nibble mode uses a Quad 2 line to 1 line multiplexer to read a nibble
of data at a time. Then it “switches” to the other nibble and reads its. Software can then be used to
construct the two nibbles into a byte. The only disadvantage of this technique is that it is slower. It
now requires a few I/O instructions to read the one byte, and it requires the use of an external IC.

The operation of the 74LS157, Quad 2 line to 1 line multiplexer is quite simple. It simply acts
as four switches. When the A/B input is low, the A inputs are selected. E.g. 1A passes through to 1Y,
2A passes through to 2Y etc. When the A/B is high, the B inputs are selected. The Y outputs are
connected up to the Parallel Port’s status port, in such a manner that it represents the MSnibble of the
status register. While this is not necessary, it makes the software easier.

To use this circuit, first we must initialize the multiplexer to switch either inputs A or B. We
will read the LSnibble first, thus we must place A/B low. The strobe is hardware inverted, thus we
must set Bit 0 of the control port to get a low on Pin 1.

 outportb(CONTROL, inportb(CONTROL) | 0x01); /* Select Low Nibble (A)*/

Once the low nibble is selected, we can read the LSnibble from the Status Port. Take note that
the Busy Line is inverted, however we won’t tackle it just yet. We are only interested in the MSnibble
of the result, thus we AND the result with 0xF0, to clear the LSnibble.

a = (inportb(STATUS) & 0xF0); /* Read Low Nibble */

Now it’s time to shift the nibble we have just read to the LSnibble of variable a,

 a = a >> 4; /* Shift Right 4 Bits */

We are now half way there. It’s time to get the MSnibble, thus we must switch the multiplexer
to select inputs B. Then we can read the MSnibble and put the two nibbles together to make a byte,

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 12

outportb(CONTROL, inportb(CONTROL) & 0xFE); /* Select High Nibble (B)*/

a = a |(inportb(STATUS) & 0xF0); /* Read High Nibble */

byte = byte ^ 0x88;

The last line toggles two inverted bits which were read in on the Busy line. It may be necessary to add
delays in the process, if the incorrect results are being returned.

Using the Parallel Port's IRQ

The Parallel Port's interrupt request is not used for printing under DOS or Windows. Early
versions of OS-2 used them, but don't anymore. Interrupts are good when interfacing monitoring
devices such as high temp alarms etc, where you don't know when it is going to be activated. It's more
efficient to have an interrupt request rather than have the software poll the ports regularly to see if
something has changed. This is even more noticeable if you are using your computer for other tasks,
such as with a multitasking operating system.

The Parallel Port's interrupt request is normally IRQ5 or IRQ7 but may be something else if
these are in use. It may also be possible that the interrupts are totally disabled on the card, if the card
was only used for printing. The Parallel Port interrupt can be disabled and enabled using bit 4 of the
control register, Enable IRQ Via Ack Line. Once enabled, an interrupt will occur upon a low to high
transition (rising edge) of the nACK. However like always, some cards may trigger the interrupt on
the high to low transition.

The following code is an Interrupt Polarity Tester, which serves as two things. It will
determine which polarity your Parallel Port interrupt is, while also giving you an example for how to
use the Parallel Port’s Interrupt. It checks if your interrupt is generated on the rising or falling edge of
the nACK line. To use the program simply wire one of the Data lines (Pins 2 to 9) to the Ack Pin (Pin
10). The easiest way to do this is to bridge some solder from DATA7 (Pin 9) to ACK (Pin 10) on a
male DB25 connector.

/* Parallel Port Interrupt Polarity Tester */
/* 2nd February 1998 */
/* Copyright 1997 Craig Peacock */
/* WWW - http://www.senet.com.au/~cpeacock */
/* Email - cpeacock@senet.com.au */

#include <dos.h>

#define PORTADDRESS 0x378 /* Enter Your Port Address Here */
#define IRQ 7 /* IRQ Here */

#define DATA PORTADDRESS+0
#define STATUS PORTADDRESS+1
#define CONTROL PORTADDRESS+2

#define PIC1 0x20
#define PIC2 0xA0

int interflag; /* Interrupt Flag */
int picaddr; /* Programmable Interrupt Controller (PIC) Base Address */

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 13

void interrupt (*oldhandler)();

void interrupt parisr() /* Interrupt Service Routine (ISR) */
{
 interflag = 1;
 outportb(picaddr,0x20); /* End of Interrupt (EOI) */
}

void main(void)
{
 int c;
 int intno; /* Interrupt Vector Number */
 int picmask; /* PIC's Mask */

 /* Calculate Interrupt Vector, PIC Addr & Mask. */

 if (IRQ >= 2 && IRQ <= 7) {
 intno = IRQ + 0x08;
 picaddr = PIC1;
 picmask = 1;
 picmask = picmask << IRQ;
 }

 if (IRQ >= 8 && IRQ <= 15) {
 intno = IRQ + 0x68;
 picaddr = PIC2;
 picmask = 1;
 picmask = picmask << (IRQ-8);
 }

 if (IRQ < 2 || IRQ > 15)
{
 printf("IRQ Out of Range\n");
 exit();
}

 outportb(CONTROL, inportb(CONTROL) & 0xDF); /* Make sure port is in Forward Direction */
 outportb(DATA,0xFF);
 oldhandler = getvect(intno); /* Save Old Interrupt Vector */
 setvect(intno, parisr); /* Set New Interrupt Vector Entry */
 outportb(picaddr+1,inportb(picaddr+1) & (0xFF - picmask)); /* Un-Mask Pic */
 outportb(CONTROL, inportb(CONTROL) | 0x10); /* Enable Parallel Port IRQ's */

 clrscr();
 printf("Parallel Port Interrupt Polarity Tester\n");
 printf("IRQ %d : INTNO %02X : PIC Addr 0x%X : Mask 0x%02X\n",IRQ,intno,picaddr,picmask);
 interflag = 0; /* Reset Interrupt Flag */
 delay(10);
 outportb(DATA,0x00); /* High to Low Transition */
 delay(10); /* Wait */
 if (interflag == 1) printf("Interrupts Occur on High to Low Transition of ACK.\n");
 else
 {
 outportb(DATA,0xFF); /* Low to High Transition */
 delay(10); /* wait */
 if (interflag == 1) printf("Interrupts Occur on Low to High Transition of ACK.\n");
 else printf("No Interrupt Activity Occurred. \nCheck IRQ Number, Port Address ”
 “and Wiring.");
 }

 outportb(CONTROL, inportb(CONTROL) & 0xEF); /* Disable Parallel Port IRQ's */
 outportb(picaddr+1,inportb(picaddr+1) | picmask); /* Mask Pic */
 setvect(intno, oldhandler); /* Restore old Interrupt Vector Before Exit */
}

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 14

At compile time, the above source may generate a few warnings, condition always true,
condition always false, unreachable code etc. These are perfectly O.K. They are generated as some of
the condition structures test which IRQ you are using, and as the IRQ is defined as a constant some
outcomes will never change. While they would of been better implemented as a preprocessor
directive, I’ve done this so you can cut and paste the source code in your own programs which may
use command line arguments, user input etc instead of a defined IRQ.

 To understand how this example works, the reader must have an assumed knowledge and
understanding of Interrupts and Interrupt Service Routines (ISR). If not, see Using Interrupts1 for a
quick introduction.

The first part of the mainline routine calculates the Interrupt Vector, PIC Addr & Mask in
order to use the Parallel Port’s Interrupt Facility. After the Interrupt Service Routine (ISR) has been
set up and the Programmable Interrupt Controller (PIC) set, we must enable the interrupt on the
Parallel Port. This is done by setting bit 4 of the Parallel Port’s Control Register using
outportb(CONTROL, inportb(CONTROL) | 0x10);

Before enabling the interrupts, we wrote 0xFF to the Parallel Port to enable the 8 data lines
into a known state. At this point of the program, all the data lines should be high. The interrupt service
routine simply sets a flag (interflag), thus we can determine when an IRQ occurs. We are now in a
position to write 0x00 to the data port, which causes a high to low transition on the Parallel Port’s
Acknowledge line as it’s connected to one of the data lines.

If the interrupt occurs on the high to low transition, the interrupt flag (interflag) should be set.
We now test this, and if this is so the program informs the user. However if it is not set, then an
interrupt has not yet occurred. We now write 0xFF to the data port, which will cause a low to high
transition on the nAck line and check the interrupt flag again. If set, then the interrupt occurs on the
low to high transition.

However if the interrupt flag is still reset, then this would suggest that the interrupts are not
working. Make sure your IRQ and Base Address is correct and also check the wiring of the plug.

Parallel Port Modes in BIOS

Today, most Parallel Ports are mulimode ports. They are normally software configurable to
one of many modes from BIOS. The typical modes are,

 Printer Mode (Sometimes called Default or Normal Modes))

Standard & Bi-directional (SPP) Mode

EPP1.7 and SPP Mode

 EPP1.9 and SPP Mode

 ECP Mode

ECP and EPP1.7 Mode

 ECP and EPP1.9 Mode

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 15

Printer Mode is the most basic mode. It is a Standard Parallel Port in forward mode only. It
has no bi-directional feature, thus Bit 5 of the Control Port will not respond. Standard & Bi-
directional (SPP) Mode is the bi-directional mode. Using this mode, bit 5 of the Control Port will
reverse the direction of the port, so you can read back a value on the data lines.

EPP1.7 and SPP Mode is a combination of EPP 1.7 (Enhanced Parallel Port) and SPP Modes.
In this mode of operation you will have access to the SPP registers (Data, Status and Control) and
access to the EPP Registers. In this mode you should be able to reverse the direction of the port using
bit 5 of the control register. EPP 1.7 is the earlier version of EPP. This version, version 1.7, may not
have the time-out bit. See Interfacing the Enhanced Parallel Port2 for more information.

EPP1.9 and SPP Mode is just like the previous mode, only it uses EPP Version 1.9 this time.
As in the other mode, you will have access to the SPP registers, including Bit 5 of the control port.
However this differs from EPP1.7 and SPP Mode as you should have access to the EPP Timeout bit.

ECP Mode will give you an Extended Capabilities Port. The mode of this port can then be set
using the ECP’s Extended Control Register (ECR). However in this mode from BIOS the EPP Mode
(100) will not be available. We will further discuss the ECP’s Extended Control Register in this
document, but if you want further information on the ECP port, consult Interfacing the Extended
Capabilities Port3.

ECP and EPP1.7 Mode & ECP and EPP1.9 Mode will give you an Extended Capabilities
Port, just like the previous mode. However the EPP Mode in the ECP’s ECR will now be available.
Should you be in ECP and EPP1.7 Mode you will get an EPP1.7 Port, or if you are in ECP and
EPP1.9 Mode, an EPP1.9 Port will be at your disposal.

The above modes are configurable via BIOS. You can reconfigure them by using your own
software, but this is not recommended. These software registers, typically found at 0x2FA, 0x3F0,
0x3F1 etc are only intended to be accessed by BIOS. There is no set standard for these configuration
registers, thus if you were to use these registers, your software would not be very portable. With
today’s multitasking operating systems, its also not a good idea to change them when it suits you.

A better option is to select ECP and EPP1.7 Mode or ECP and EPP1.9 Mode from BIOS and
then use the ECP’s Extended Control Register to select your Parallel Port’s Mode. The EPP1.7 mode
had a few problems in regards to the Data and Address Strobes being asserted to start a cycle
regardless of the wait state, thus this mode if not typically used now. Best set your Parallel Port to
ECP and EPP1.9 Mode.

Parallel Port Modes and the ECP’s Extended Control Register

As we have just discussed, it is better to set the Parallel Port to ECP and EPP1.9 Mode and
use the ECP’s Extended Control Register to select different modes of operation. The ECP Registers
are standardized under Microsoft’s Extended Capabilities Port Protocol and ISA Interface
Standard, thus we don't have that problem of every vendor having their own register set.

When set to ECP Mode, a new set of registers become available at Base + 0x400h. A
discussion of these registers are available in Interfacing the Extended Capabilities Port3. Here we are
only interested in the Extended Control Register (ECR) which is mapped at Base + 0x402h. It should
be stated that the ECP’s registers are not available for port’s with a base address of 0x3BCh.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 16

Bit Function
7:5 Selects Current Mode of Operation

000 Standard Mode
001 Byte Mode
010 Parallel Port FIFO Mode
011 ECP FIFO Mode
100 EPP Mode
101 Reserved
110 FIFO Test Mode
111 Configuration Mode

4 ECP Interrupt Bit
3 DMA Enable Bit
2 ECP Service Bit
1 FIFO Full
0 FIFO Empty

Table 7 ECR - Extended Control Register

The table above is of the Extended Control Register. We are only interested in the three MSB
of the Extended Control Register which selects the mode of operation. There are 7 possible modes of
operation, but not all ports will support all modes. The EPP mode is one such example, not being
available on some ports.

Modes of Operation

Standard mode Selecting this mode will cause the ECP port to behave as a Standard Parallel Port,
without bi-directional functionality.

Byte Mode / PS/2
mode

Behaves as a SPP in bi-directional mode. Bit 5 will place the port in reverse mode.

Parallel Port FIFO
mode

In this mode, any data written to the Data FIFO will be sent to the peripheral using
the SPP Handshake. The hardware will generate the handshaking required. Useful
with non-ECP devices such as printers. You can have some of the features of ECP
like FIFO buffers and hardware generation of handshaking but with the existing
SPP handshake (Centronics) instead of the ECP Handshake.

ECP FIFO mode Standard mode for ECP use. This mode uses the ECP Handshake described in
Interfacing the Extended Capabilities Port3

When in ECP Mode though BIOS, and the ECR register is set to ECP FIFO Mode
(011), the SPP registers may disappear.

EPP mode/Reserved This will enable EPP Mode, if available. Under BIOS, if ECP mode is set then it’s
more than likely, this mode is not an option. However if BIOS is set to ECP and
EPP1.x Mode, then EPP 1.x will be enabled.

Under Microsoft’s Extended Capabilities Port Protocol and ISA Interface Standard this
mode is Vendor Specified.

Interfacing the Standard Parallel Port

Interfacing the Standard Parallel Port Page 17

Reserved Currently Reserved.

Under Microsoft’s Extended Capabilities Port Protocol and ISA Interface Standard this
mode is Vendor Specified.

FIFO Test Mode While in this mode, any data written to the Test FIFO Register will be placed into
the FIFO and any data read from the Test FIFO register will be read from the
FIFO buffer. The FIFO Full/Empty Status Bits will reflect their true value, thus
FIFO depth, among other things can be determined in this mode.

Configuration Mode In this mode, the two configuration registers, cnfgA & cnfgB become available at
their designated Register Addresses.

If you are in ECP Mode under BIOS, or if your card is jumpered to use ECP then it is a good
idea to initialize the mode of your ECP port to a pre-defined state before use. If you are using SPP,
then set the port to Standard Mode as the first thing you do. Don't assume that the port will already be
in Standard (SPP) mode.

Under some of the modes, the SPP registers may disappear or not work correctly. If you
are using SPP, then set the ECR to Standard Mode. This is one of the most common mistakes that
people make.

Notes

Note1 Using Interrupts is available in PDF from
http://www.geocities.com/SiliconValley/Bay/8302/interupt.pdf (62kb)

Note2 Interfacing the Enhanced Parallel Port is available in PDF from
http://www.geocities.com/SiliconValley/Bay/8302/epp.pdf (33kb)

 Note3 Interfacing the Extended Capabilities Port is available in PDF from
http://www.geocities.com/SiliconValley/Bay/8302/ecp.pdf (53kb)

Craig Peacock’s Interfacing the PC

http://www.senet.com.au/~cpeacock

http://www.geocities.com/SiliconValley/Bay/8302/

Copyright February 1998 Craig Peacock.

Any errors, ideas, criticisms or problems, please contact the author at cpeacock@senet.com.au

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 1

Interfacing the Enhanced Parallel Port
Table of Contents

EPP - Enhanced Parallel Port Page 1

EPP Hardware Properties Page 1

The EPP Handshake Page 2

EPP Data Write Cycle Page 3

EPP Address Write Cycle Page 3

EPP Data Read Cycle Page 4

EPP Address Read Cycle Page 4

The EPP’s Software Registers Page 4

EPP Programming Considerations Page 6

EPP - Enhanced Parallel Port

The Enhanced Parallel Port (EPP) was designed in a joint venture between Intel, Xircom & Zenith
Data Systems. EPP Ports were first specified in the EPP 1.7 standard, and then later included in the
IEEE 1284 Standard released in 1994. EPP has two standards, EPP 1.7 and EPP 1.9. There are
differences between the two standards which may affect the operation of devices. This is further
discussed latter. EPP has a typical transfer rate in the order of 500KB/S to 2MB/S. This is achieved by
allowing the hardware contained in the port to generate handshaking, strobing etc, rather that have the
software do it, which was the case with Centronics.

For the hobbyist, EPP is more commonly used than ECP. EPP differs from ECP by the fact that the
EPP Port generates and controls all the transfers to and from the peripheral. ECP on the other hand
requires the peripheral to negotiate a reverse channel and control the handshaking. This is harder to
achieve with common glue logic, thus really requires a dedicated controller or ECP Peripheral Chip.

EPP Hardware Properties

When using EPP mode, a different set of tasks and labels are assigned to each line. These are listed
below in Table 4. It's very common to see both the SPP and EPP names interchanged in Parallel Port
Data Sheets and Literature. This can make it very hard to focus on what is exactly happening. Therefore
all the documentation here will use the EPP names.

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 2

Pin SPP
Signal

EPP
Signal In/Out Function

1 Strobe Write Out A low on this line indicates a Write,
High indicates a Read

2-9 Data 0-7 Data 0-7 In-Out Data Bus. Bi-directional

10 Ack Interrupt In Interrupt Line. Interrupt occurs on
Positive (Rising) Edge.

11 Busy Wait In Used for handshaking. A EPP cycle
can be started when low, and finished
when high.

12 Paper Out /
End

Spare In Spare - Not Used in EPP Handshake

13 Select Spare In Spare - Not Used in EPP Handshake

14 Auto
Linefeed

Data
Strobe

Out When Low, indicates Data transfer

15 Error /
Fault

Spare In Spare - Not used in EPP Handshake

16 Initialize Reset Out Reset - Active Low

17 Select
Printer

Address
Strobe

Out When low, indicates Address transfer

18-25 Ground Ground GND Ground

Table 1. Pin Assignments For Enhanced Parallel Port Connector.

Paper Out, Select and Error are not defined in the EPP handshake. These lines can be utilised in
any way by the user. The status of these lines can be determined at anytime by viewing the SPP Status
Register. Unfortunately there are no spare output's. This can become a hassle regularly.

The EPP Handshake

In order to perform a valid exchange of data using EPP we must follow the EPP handshake. As the
hardware does all the work, this handshake only requires to be used for your hardware and not for
software as the case with SPP. To initiate an EPP cycle your software needs to perform only one I/O
operation to the relevant EPP Register. Details on this, later.

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 3

EPP Data Write Cycle

Figure 1. Enhanced Parallel Port Data Write
Cycle.

1. Program writes to EPP Data Register.
(Base + 4)

2. nWrite is placed low. (Low indicates write
operation)

3. Data is placed on Data Lines 0-7.

4. nData Strobe is asserted if Wait is Low
(O.K. to start cycle)

5. Host waits for Acknowledgment by
nWait going high (O.K. to end cycle)

6. nData Strobe is de-asserted.

7. EPP Data Write Cycle Ends.

EPP Address Write Cycle

Figure 2. Enhanced Parallel Port Address Write
Cycle.

1. Program writes address to EPP's
Address Register (Base + 3)

2. Write is placed low. (Low indicates write
operation)

3. Address is placed on Data Lines 0-7.

4. nAddress Strobe is asserted if Wait is Low
(O.K. to start cycle)

5. Host waits for Acknowledgment by wait
going high (O.K. to end cycle)

6. nAddress Strobe is De-asserted.

7. EPP Address Write Cycle Ends.

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 4

EPP Data Read Cycle

Figure 3. Enhanced Parallel Port Data Read
Cycle.

1. Program reads EPP Data Register.
(Base + 4)

2. nData Strobe is asserted if Wait is Low
(O.K. to start cycle)

3. Host waits for Acknowledgment by
nWait going high

4. Data is read from Parallel Port Pins.

5. nData Strobe is de-asserted.

6. EPP Data Read Cycle Ends.

EPP Address Read Cycle

Figure 4. Enhanced Parallel Port Address Read
Cycle.

1. Program reads EPP Address Register.
(Base + 3)

2. nAddr Strobe is asserted if Wait is Low
(O.K. to start cycle)

3. Host waits for Acknowledgment by
nWait going high

4. Data is read from Parallel Port Pins.

5. nAddr Strobe is de-asserted.

6. EPP Address Read Cycle Ends.

Note If implementing EPP 1.7 Handshake (Pre IEEE 1284) the Data and Address Strobes can
be asserted to start a cycle regardless of the wait state. EPP 1.9 will only start a cycle
once wait is low. Both EPP 1.7 and EPP 1.9 require the wait to be high to finish a cycle.

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 5

The EPP's Software Registers.

The EPP Port also has a new set of registers. However 3 of them have been inherited from the
Standard Parallel Port. On the next page is a table showing the new and existing registers.

Address Port Name Read/Write

Base + 0 Data Port (SPP) Write

Base + 1 Status Port (SPP) Read

Base + 2 Control Port (SPP) Write

Base + 3 Address Port (EPP) Read/Write

Base + 4 Data Port (EPP) Read/Write

Base + 5 Undefined (16/32bit Transfers) -

Base + 6 Undefined (32bit Transfers) -

Base + 7 Undefined (32bit Transfers) -

Table 2 EPP Registers

As you can see, the first 3 addresses are exactly the same than the Standard Parallel Port Register
and behave in exactly the same way. Therefore if you used a Enhanced Parallel Port, you can output
data to Base + 0 in exactly the same fashion than you would if it was a Standard Parallel Port (SPP). If
you were to connect a printer, and use compatibility mode then you would have to check to see if the
port is busy and then assert & de-assert the strobe using the Control and Status Port, then wait for the
Ack.

If you wish to communicate with a EPP compatible device then all you have to do, is place any data
you wish to send in the EPP Data Register at Base + 4 and the card will generate all the necessary
handshaking required. Likewise if you wish to send an address to your device, then you use the EPP
Address Register at offset +3.

Both the EPP Address Register and the EPP Data Register are read / write, thus to read data from
your device, you can use the same registers. However the EPP Printer Card has to initiate a read Cycle
as both the nData Strobe and nAddress Strobe are outputs. Your device can signal a read request via
the use of the interrupt and have your ISR perform the Read Operation.

The Status Port has one little modification. Bit 0, which was reserved in the SPP register set, now
becomes the EPP Time-out Bit. This bit will be set when an EPP time-out occurs. This happens when
the nWait line is not deasserted within approximately 10uS (depending upon the port) of the IOW or IOR
line being asserted. The IOW and IOR are the I/O Read and Write lines present on the ISA Bus.

The EPP mode is very depended of the ISA bus timing. When a read cycle is performed, the port
must undertake the appropriate Read/Write handshake and return the data in that ISA cycle. Of course
this doesn't occur within one ISA cycle, thus the port uses the IOCHRDY (I/O Channel Ready) on the
ISA bus to introduce wait states, until the cycle completes. Now imagine if a EPP Read or Write is
started with no peripheral connected? The port never gets an acknowledgment (nWait), thus keeps
sending requests for wait states, and your computer locks up. Therefore the EPP implements a type of
watchdog, which times out after approximately 10uS.

Interfacing the Enhanced Parallel Port

Interfacing the Enhanced Parallel Port Page 6

The three registers, Base + 5, Base + 6 and Base + 7 can be used for 16 and 32 bit read/write
operations if your port supports it. This can further reduce your I/O operations. The Parallel Port can only
transport 8 bits at a time, thus any 32 or 16 bit word written to the Parallel Port will be split into byte size
blocks and sent via the Parallel Port's 8 data lines.

EPP Programming Considerations.

EPP only has two main registers and a Time-out Status Flag, What could there possibly be to set up?

Before you can start any EPP cycles by reading and writing to the EPP Data and Address Ports, the
port must be configured correctly. In the idle state, an EPP port should have it's nAddress Strobe, nData
Strobe, nWrite and nReset lines inactive, high. Some ports require you to set this up before starting any
EPP Cycle. Therefore our first task is to manually initialise these lines using the SPP Registers. Writing
XXXX0100 to the control port will do this.

On some cards, if the Parallel Port is placed in reverse mode, a EPP Write cycle cannot be
performed. Therefore it is also wise to place the Parallel Port in forward mode before using EPP.
Clearing Bit 5 of the Control Register should result in an more enjoyable programming session, without
tearing your hair out.

The EPP Time-out bit we have already discussed. When this bit is set, the EPP port may not function
correctly. A common scenario is always reading 0xFF from either the Address or Data Cycles. This bit
should be cleared for reliable operation, and constantly checked.

Copyright 2002 Craig Peacock Craig.Peacock@beyondlogic.org

While every possible effort is made to ensure the information in this document is correct, should you find any errors
please report them to Craig.Peacock@beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 1

Interfacing the Extended Capabilities Port
Table of Contents

Introduction to the Extended Capabilities Port Page 1
ECP Hardware Properties Page 1
The ECP Handshake Page 2

ECP Forward Data Cycle Page 3
ECP Forward Command Cycle Page 3

ECP Reverse Data Cycle Page 4
ECP Reverse Command Cycle Page 4

EPP Handshake vs SPP Handshake Page 5
RLE – Run Length Encoding Page 5
ECP Software Registers Page 5

ECP's Extended Control Register (ECR) Page 6
ECP's Configuration Register A (cnfgA) Page 7
ECP's Configuration Register B (cnfgB) Page 8

Introduction to the Extended Capabilities Port

The Extended Capabilities Mode was designed by Hewlett Packard and Microsoft to be implemented
as the Extended Capabilities Port Protocol and ISA Interface Standard. This protocol uses additional
hardware to generate hand shaking signals etc just like the EPP mode, thus runs at very much the same
speed than the EPP mode. This mode, however may work better under Windows as it can use DMA
channels to move it's data about. It also uses a FIFO buffer for the sending and/or receiving of data.

Another feature of ECP is a real time data compression. It uses Run Length Encoding (RLE) to
achieve data compression ratio's up to 64:1. This comes is useful with devices such as Scanners and
Printers where a good part of the data is long strings which are repetitive.

The Extended Capabilities Port supports a method of channel addressing. This is not intended to be
used to daisy chain devices up but rather to address multiple devices within one device. Such an
example is many fax machines on the market today which may contain a Parallel Port to interface it to
your computer. The fax machine can be split up into separate devices such as the scanner, modem/Fax
and printer, where each part can be addresses separately, even if the other devices cannot accept data
due to full buffers.

ECP Hardware Properties

While Extended Capabilities Printer Ports use exactly the same D25 connector as your SPP, ECP
assigns different tasks to each of the pins, just like EPP. This means that there is also a different
handshake method when using a ECP interface.

The ECP is backwards compatible to the SPP and EPP. When operating in SPP mode, the individual
lines operate in exactly the same fashion than the SPP and thus are labelled Strobe, Auto Linefeed, Init,
Busy etc. When operating in EPP mode, the pins function according to the method described in the EPP
protocol and have a different method of hand shaking. When the port is operating in ECP mode, then the
following labels are assigned to each pin.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 2

Pin SPP Signal ECP Signal Direct’n Function

1 Strobe HostCLK Out A low on this line indicates, that there is valid
data at the host. When this pin is de-asserted,
the +ve clock edge should be used to shift the
data into the device.

2-9 Data 0-7 Data 0-7 In/Out Data Bus. Bi-directional

10 Ack PeriphCLK In A low on this line indicates, that there is valid
data at the Device. When this pin is de-
asserted, the +ve clock edge should be used
to shift the data into the Host.

11 Busy PeriphAck In When in reverse direction a HIGH indicates
Data, while a LOW indicates a Command
Cycle.
In forward direction, functions as PeriphAck.

12 Paper Out
End

nAckReverse In When Low, Device acknowledges Reverse
Request.

13 Select X-Flag In Extensibility Flag

14 Auto Linefeed Host Ack Out When in forward direction a HIGH indicates
Data, while a LOW indicates a Command
Cycle.
In reverse direction, functions as HostAck.

15 Error Fault PeriphRequest In A LOW set by the device indicates reverse
data is available.

16 Initialise NReverse

Request

Out A LOW indicates data is in reverse direction.

17 Select Printer 1284 Active Out A HIGH indicates Host is in 1284 Transfer
Mode. Taken low to terminate.

18-25 Ground Ground GND Ground.

Table 1. Pin Assignments For Extended Capabilities Parallel Port Connector.

The HostAck and PeriphAck lines indicate whether the signals on the data line are data or a command. If these
lines are high then data is placed on the data lines (Pins 2-7). If a command cycle is taking place then the
appropriate line will be low, i.e. if the host is sending a command, then HostAck will be low or if the
device/peripheral is sending a command the PeriphAck line will be low.

A command cycle can be one of two things, either a RLE count or an address. This is determined by the bit 7
(MSB) of the data lines, i.e. pin 9. If bit 7 is a 0, then the rest of the data (bits 0-6) is a run length count which is
used with the data compression scheme. However if bit 7 is a 1, then the data present on bits 0 to 6 is a channel
address. With one bit missing this can only be a value from 0 to 127(DEC).

The ECP Handshake

The ECP handshake is different to the SPP handshake. The most obvious difference is that ECP has
the ability at anytime to transmit data in any direction, thus additional signalling is required. Below is the
ECP handshake for both the Forward and Reverse Directions.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 3

ECP Forward Data Cycle

Figure 1. Enhanced Capabilities Port Forward Data Cycle.

1. Data is placed on Data lines by Host.

2. Host then indicates a Data Cycle will
proceed by asserting HostAck.

3. Host indicates valid data by asserting
HostClk low.

4. Peripheral sends its acknowledgment of
valid data by asserting PeriphAck.

5. Host de-asserts HostClk high. +ve edge
used to shift data into the Peripheral.

6. Peripheral sends it's acknowledgment of
the byte via de-asserting PeriphAck.

ECP Forward Command Cycle

Figure 2. Enhanced Capabilities Port Forward Command Cycle.

1. Data is placed on Data lines by Host.

2. Host then indicates a Command cycle will
proceed by de-asserting HostAck.

3. Host indicates valid data by asserting
HostClk low.

4. Peripheral sends its acknowledgment of
valid data by asserting PeriphAck.

5. Host de-asserts HostClk high. +ve edge
used to shift data into the Peripheral.

6. Peripheral sends it's acknowledgment of
the byte via de-asserting PeriphAck.

ECP Forward Data Cycle

HostClk

PeriphAck

HostAck

Data

HostClk

PeriphAck

HostAck

Data

ECP Forward Command Cycle

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 4

ECP Reverse Data Cycle

Figure 3. Enhanced Capabilities Port Reverse Data Cycle.

1. Host sets nReverseRequest Low to
request a reverse channel.

2. Peripheral acknowledges reverse
channel request via asserting
nAckReverse low.

3. Data is placed on data lines by
Peripheral.

4. Data cycle is then selected by
Peripheral via PeriphAck going high.

5. Valid data is indicated by the
Peripheral setting PeriphClk low.

6. Host sends its acknowledgment of
valid data via HostAck going high.

7. Device/Peripheral sets PeriphClk
high. +ve edge used to shift data
into the Host.

8. Host sends it's acknowledgment of
the byte by de-asserting HostAck low.

ECP Reverse Command Cycle

Figure 4. Enhanced Capabilities Port Reverse Command Cycle.

1. Host sets nReverseRequest Low to
request a reverse channel.

2. Peripheral acknowledges reverse
channel request via asserting
nAckReverse low.

3. Data is placed on data lines by
Peripheral.

4. Command cycle is then selected by
Peripheral via PeriphAck going low.

5. Valid data is indicated by the
Peripheral setting PeriphClk low.

6. Host sends its acknowledgment of
valid data via HostAck going high.

7. Device/Peripheral sets PeriphClk
high. +ve edge used to shift data
into the Host.

8. Host sends it's acknowledgment of the
byte by de-asserting HostAck low.

PeriphClk

HostAck

PeriphAck

Data

ECP Reverse Data Cycle

nReverse Request

nAckReverse

PeriphClk

HostAck

PeriphAck

Data

ECP Reverse Command Cycle

nReverse Request

nAckReverse

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 5

EPP Handshake vs SPP Handshake

 If we look back at the SPP handshake you will realise it only has 5 steps,

1. Write the byte to the Data Port

2. Check to see is the printer is busy. If the printer is busy, it will not accept any data, thus any
data which is written will be lost.

3. Take the Strobe (Pin 1) low. This tells the printer that there is the correct data on the data
lines. (Pins 2-9)

4. Put the strobe high again after waiting approximately 5 microseconds after putting the strobe
low. (Step 3)

5. Check for Ack from Peripheral.

and that the ECP handshake has many more steps. This would suggest that ECP would be slower
that SPP. However this is not the case as all of these steps above are controlled by the hardware on
your I/O control. If this handshake was to be implemented via software control then it would be a lot
slower that it's SPP counterpart.

RLE - Run Length Encoding

As briefly discussed earlier, the ECP Protocol includes a Simple Compression Scheme called
Run Length Encoding. It can support a maximum compression ratio of 64:1 and works by sending
repetitive single bytes as a run count and one copy of the byte. The run count determines how many
times the following byte is to be repeated.

For example, if a string of 25 'A's were to be sent, then a run count byte equal to 24 would be
sent first, followed by the byte 'A'. The receiving peripheral on receipt of the Run Length Count,
would expand (Repeat) the next byte a number of times determined via the run count.

The Run Length Byte has to be distinguished from other bytes in the Data Path. It is sent as a
Command to the ECP's Address FIFO Port. Bytes sent to this register can be of two things, a Run
Length Count or an Address. These are distinguished by the MSB, Bit 7. If Bit 7 is Set (1), then the
other 7 bits, bits 0 to 6 is a channel address. If Bit 7 is Reset (0), then the lower 7 bits is a run length
count. By using the MSB, this limits channel Addresses and Run Length Counts to 7 Bits (0 - 127).

ECP Software Registers

The table below shows the registers of the Extended Capabilities Port. The first 3 registers
are exactly the same than with the Standard Parallel Port registers. Note should be taken, however,
of the Enable bi-directional Port bit (bit 5 of the Control Port.) This bit reflects the direction that the
ECP port is currently in, and will effect the FIFO Full and FIFO Empty bits of the ECR Register,
which will be explained later.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 6

Address Port Name Read/Write

Base + 0 Data Port (SPP) Write

ECP Address FIFO (ECP MODE) Read/Write

Base + 1 Status Port (All Modes) Read/Write

Base + 2 Control Port (All Modes) Read/Write

Base + 400h Data FIFO (Parallel Port FIFO Mode) Read/Write

Data FIFO (ECP Mode) Read/Write

Test FIFO (Test Mode) Read/Write

Configuration Register A (Configuration Mode) Read/Write

Base + 401h Configuration Register B (Configuration Mode) Read/Write

Base + 402h Extended Control Register (Used by all modes) Read/Write

Table 2 : ECP Registers

ECP's Extended Control Register (ECR)

The most important register with a Extended Capabilities Parallel Port is the Extended
Control Register (ECR) thus we will target it's operation first. This register sets up the mode in which
the ECP will run, plus gives status of the ECP's FIFO among other things. You will find the contents
of this register below, in more detail.

Bit Function

7:5 Selects Current Mode of Operation

000 Standard Mode

001 Byte Mode

010 Parallel Port FIFO Mode

011 ECP FIFO Mode

100 EPP Mode

101 Reserved

110 FIFO Test Mode

111 Configuration Mode

4 ECP Interrupt Bit

3 DMA Enable Bit

2 ECP Service Bit

1 FIFO Full

0 FIFO Empty

Table 3 ECR - Extended Control Register

The three MSB of the Extended Control Register selects the mode of operation. There are 7
possible modes of operation, but not all ports will support all modes. The EPP mode is one such
example, not being available on some ports. On the next page is a table of the Modes of Operation.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 7

Modes of Operation

Standard Mode Selecting this mode will cause the ECP port to behave as a
Standard Parallel Port, without Bi-directional functionality.

Byte Mode /
PS/2 Mode

Behaves as a SPP in Bi-directional (Reverse) mode.

Parallel Port
FIFO Mode

In this mode, any data written to the Data FIFO will be sent to
the peripheral using the SPP handshake. The hardware will
generate the handshaking required. Useful with non-ECP
devices such as Printers. You can have some of the features
of ECP like FIFO buffers and hardware generation of
handshaking but with the existing SPP handshake instead of
the ECP handshake.

ECP FIFO
Mode

Standard Mode for ECP use. This mode uses the ECP
Handshake, already described.

EPP Mode /
Reserved

On some chipsets, this mode will enable EPP to be used.
While on others, this mode is still reserved.

Reserved Currently Reserved.

FIFO Test
Mode

While in this mode, any data written to the Test FIFO
Register will be placed into the FIFO and any data read from
the Test FIFO register will be read from the FIFO buffer. The
FIFO Full/Empty Status Bits will reflect their true value, thus
FIFO depth, among other things can be determined in this
mode.

Configuration
Mode

In this mode, the two configuration registers, cnfgA & cnfgB
become available at their designated Register Addresses.

As outlined above, when the port is set to operate in Standard Mode, it will behave just like a
Standard Parallel Port (SPP) with no bi-directional data transfer. If you require bi-directional transfer,
then set the mode to Byte Mode. The Parallel Port FIFO mode and ECP FIFO mode both use
hardware to generate the necessary handshaking signals. The only difference between each mode
is that The Parallel Port FIFO Mode uses SPP handshaking, thus can be used with your SPP printer.
ECP FIFO mode uses ECP handshaking.

The FIFO test mode can be used to test the capacity of the FIFO Buffers as well as to make
sure they function correctly. When in FIFO test mode, any byte which is written to the TEST FIFO
(Base + 400h) is placed into the FIFO buffer and any byte which is read from this register is taken
from the FIFO Buffer. You can use this along with the FIFO Full and FIFO Empty bits of the
Extended Control Register to determine the capacity of the FIFO Buffer. This should normally be
about 16 Bytes deep.

The other Bits of the ECR also play an important role in the operation of the ECP Port. The
ECP Interrupt Bit, (Bit 4) enables the use of Interrupts, while the DMA Enable Bit (Bit 3) enables the
use of Direct Memory Access. The ECP Service Bit (Bit 2) shows if an interrupt request has been
initiated. If so, this bit will be set. Resetting this bit is different with different chips. Some require you
to Reset the Bit, e.g. Write a Zero to it. Others will reset once the Register has been read.

The FIFO Full (Bit 1) and FIFO Empty (Bit 0) show the status of the FIFO Buffer. These bits
are direction dependent, thus note should be taken of the Control Register's Bit 5. If bit 0 (FIFO
Empty) is set, then the FIFO buffer is completely empty. If Bit 1 is set then the FIFO buffer is Full.
Thus, if neither bit 0 or 1 is set, then there is data in FIFO, but is not yet full. These bits can be used
in FIFO Test Mode, to determine the capacity of the FIFO Buffer.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 8

ECP's Configuration Register A (cnfgA)

Configuration Register A is one of two configuration registers which the ECP Port has. These
Configuration Registers are only accessible when the ECP Port is in Configuration Mode. (See
Extended Control Register) CnfgA can be accessed at Base + 400h.

Bit Function

7 1 Interrupts are level triggered

0 Interrupts are edge triggered (Pulses)

6:4 00h Accepts Max. 16 Bit wide words

01h Accepts Max. 8 Bit wide words

02h Accepts Max. 32 Bit wide words

03h:07h Reserved for future expansion

3 Reserved

2 Host Recovery : Pipeline/Transmitter Byte included in FIFO?

0 In forward direction, the 1 byte in the transmitter pipeline
doesn't affect FIFO Full.

1 In forward direction, the 1 byte in the transmitter pipeline is
include as part of FIFO Full.

1:0 Host Recovery : Unsent byte(s) left in FIFO

00 Complete Pword

01 1 Valid Byte

10 2 Valid Bytes

11 3 Valid Bytes

Table 4 ECR - Configuration Register A

Configuration Register A can be read to find out a little more about the ECP Port. The MSB,
shows if the card generates level interrupts or edge triggered interrupts. This will depend upon the
type of bus your card is using. Bits 4 to 6, show the buses width within the card. Some cards only
have a 8 bit data path, while others may have a 32 or 16 bit width. To get maximum efficiency from
your card, the software can read the status of these bits to determine the Maximum Word Size to
output to the port.

The 3 LSB's are used for Host Recovery. In order to recover from an error, the software must
know how many bytes were sent, by determining if there are any bytes left in the FIFO. Some
implementations may include the byte sitting in the transmitter register, waiting to be sent as part of
the FIFO's Full Status, while others may not. Bit 2 determines weather or not this is the case.

The other problem is that the Parallel Ports output is only 8 bits wide, and that you many be
using 16 bit or 32 bit I/O Instructions. If this is the case, then part of your Port Word (Word you sent
to port) may be sent. Therefore Bits 0 and 1 give an indication of the number of valid bytes still left in
the FIFO, so that you can retransmit these.

ECP's Configuration Register B (cnfgB)

Configuration Register B, like Configuration Register A is only available when the ECP Port is
in Configuration Mode. When in this mode, cnfgB resides at Base + 401h. On the next page you will
find the make-up of the cnfgB Register.

Interfacing the Extended Capabilities Parallel Port (ECP)

Interfacing the Extended Capabilities Parallel Port (ECP) Page 9

Bit(s) Function

7 1 Compress outgoing Data Using RLE

0 Do Not compress Data

6 Interrupt Status - Shows the Current Status of the IRQ Pin

5:3 Selects or Displays Status of Interrupt Request Line.

000 Interrupt Selected Via Jumper

001 IRQ 7

010 IRQ 9

011 IRQ 10

100 IRQ 11

101 IRQ 14

110 IRQ 15

111 IRQ 5

2:0 Selects or Displays Status of the DMA Channel the Printer Card
Uses

000 Uses a Jumpered 8 Bit DMA Channel

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 Uses a Jumpered 16 Bit DMA Channel

101 DMA Channel 5

110 DMA Channel 6

111 DMA Channel 7
Table 5 - Configuration B Register

The Configuration Register B (cnfgB) can be a combination of read/write access. Some ports
may be software configurable, where you can set the IRQ and DMA resources from the register.
Others may be set via BIOS or by using jumpers on the Card, thus are read only.

Bit 7 of the cnfgB Register selects whether to compress outgoing data using RLE (Run
Length Encoding.) When Set, the host will compress the data before sending. When reset, data will
be sent to the peripheral raw (Uncompressed). Bit 6 returns the status of the IRQ pin. This can be
used to diagnose conflicts as it will not only reflect the status of the Parallel Ports IRQ, but and other
device using this IRQ.

Bits 5 to 3 give status of about the Port's IRQ assignment. Likewise for bits 2 to 0 which give
status of DMA Channel assignment. As mentioned above these fields may be read/write. The
disappearing species of Parallel Cards which have Jumpers may simply show it's resources as
"Jumpered" or it may show the correct Line Numbers. However these of course will be read only.

Copyright 2002 Craig Peacock Craig.Peacock@beyondlogic.org

While every possible effort is made to ensure the information in this document is correct, should you find any errors please report
them to Craig.Peacock@beyondlogic.org

