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Abstract 

Background 

Postoperative atrial fibrillation (PoAF) is a common complication after coronary artery bypass 

grafting (CABG). Despite its association with increased risk of ischemic stroke, bleeding, acute renal 

failure and mortality there is still no ideal predictive tool with proper clinical interpretability. 

Methods 

A retrospective single-center cohort study enrolled 1305 electronic medical records of patients 

with elective isolated CABG. PoAF was identified in 280 (21.5%) patients. Prognostic models with 

continuous variables were developed utilizing multivariate logistic regression (MLR), random forest 

and eXtreme gradient boosting methods. Predictors were dichotomized via grid search for optimal cut-

off points, centroid calculation, and Shapley additive explanation (SHAP). For multilevel categorization, 

we proposed to use threshold values combination identified during dichotomization, as well as ranking 

cut-off thresholds by MLR weighting coefficients (multimetric categorization method). 

Results 

Based on multistage selection, nine PoAF predictors were identified and validated. After 

categorization, prognostic models with continuous and multilevel categorical variables were developed. 

Multilevel categorical models advantage lies in their ability to explain PoAF prediction results and 

provide clinical interpretation, with comparable quality (AUC: 0.802 and 0.795). 

Conclusions 

We introduce a novel multimetric multilevel categorization approach that integrates SHAP-

derived cut-offs with conventional dichotomization methods and MLR weighting. This method 

improved interpretability without compromising predictive performance (AUC 0.802 vs 0.795).  

Keywords: prognostic models, multilevel categorization, dichotomization, postoperative atrial 

fibrillation, stochastic gradient boosting, SHapley Additive exPlanations (SHAP) method. 
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Highlights 

1. Validation of new 1st diagnosed atrial fibrillation predictors were performed in patients 

with coronary heart disease after coronary artery bypass grafting with subsequent development of 

predictive models utilizing machine learning methods. 

2. A new multilevel categorization method was tested, allowing to identify threshold 

values of predictors with the greatest predictive value, which were classified as risk factors for 

postoperative atrial fibrillation. 

3. The best quality metrics (AUC - 0.802) were demonstrated by a stochastic gradient 

boosting prognostic model based on predictors identified by the multilevel categorization method. 
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1. Introduction.  

Postoperative atrial fibrillation (PoAF) affects 20-40% of patients after coronary artery bypass 

grafting (CABG) [1], with stable rates despite preventive strategies [2,3] while some authors have even 

shown a potential trend to increase [4]. PoAF increases the risk of stroke, bleeding, and renal failure 

approximately fourfold, and doubles mortality at 30 days and 6 months [5]. The lack of a unified 

pathophysiological model has driven the creation of forecasting tools to personalize risk assessment [7-

9]. 

Among PoAF prediction studies, the PoAF score [7] developed using MLR methods achieved an 

accuracy by an area under the ROC curve (AUC) of 0.63-0.65, with 0.6 sensitivity and 0.65 specificity 

values [8, 10]. Such limited accuracy prompted the use of new machine learning (ML) methods, 

allowing to improve model quality measured by AUC up to 0.7-0.75 [8, 11]. These models employed 

continuous and dichotomous predictors, with binary variables used to assess concomitant diseases. 

However, previous works lacked clinical justification for threshold values used in PoAF risk prediction. 

Multilevel categorization was only applied to age in some studies, with cut-off points set arbitrarily [7, 

11]. 

This study aimed to develop new prognostic models of PoAF in patients with coronary artery 

disease after isolated CABG based on preoperative predictors set and their multilevel categorization 

efficiency evaluation to improve prognosis quality and its clinical interpretation. 

2. Material and methods 

2.1 Data 

Single-center cohort retrospective study results are presented, during which electronic health 

records data of patients with coronary artery disease admitted for planned isolated CABG to the 

Vladivostok “Primorye Regional Clinical Hospital No. 1” cardiac surgery department from 2008 to 2023 

were analyzed. Exclusion criteria included the presence of atrial fibrillation (of any form) in anamnesis, 

as well as combination of CABG with any other surgery. Thus, the final dataset was represented by 

1305 patients (992 men and 313 women) aged 35 to 83 years. The study protocol met local institutional 

requirements and received full approval; patient consent was not required. Far eastern federal university 

review board “Ethics approval: IRB protocol number: №1/3”, were approved on 19/03/2023. As the 
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study involved a retrospective review of medical records, the requirement for patient consent was 

waived. Data were accessed from 19/03/23 to 12/08/23 for research purposes. During this period authors 

had access to information that could identify individual participants during data collection (DOB and 

medical record number). 

First diagnosed PoAF episode was considered as the endpoint. AF episodes lasting more than 30 

seconds, verified by the results of continuous electrocardiogram monitoring for at least 96 hours after 

CABG, were considered as PoAF development evidence. The PoAF presence was coded “1”, the 

absence – “0”. Thus, two patient groups were identified among the examined cohort. The first included 

280 (21.5%) patients with AF paroxysms recorded during postoperative period in the hospital, the 

second - 1025 (78.5%) patients without cardiac arrhythmias.  

The preoperative clinical and functional status of patients was assessed on the first day of hospital 

treatment by 130 factors, the main ones of which are presented in Appendix A. In addition to 

demographic, anthropometric, anamnestic data and physical examination results, clinical blood test 

indicators were analyzed. The diameters of the left (LAD) and right (RAD) atria, longitudinal 

dimensions of the left (LAL) and right (RAL) atrium, end-systolic (ESD) and diastolic (EDD) 

dimensions of the left ventricular (LV), ejection fraction (LVEF), and mean pulmonary artery pressure 

(MPAP) were determined. The ECG results were also analyzed: duration of P wave and QRS complex, 

PQ, QT intervals and RR.  

2.2 Statistical Methods 

Continuous characteristics distribution according to the Kolmogorov-Smirnov test differed from 

normal, so consequently nonparametric mathematical statistics methods were used for them. The 

indicators were presented as median (Me) and interquartile ranges (Q1; Q3), the Mann-Whitney test was 

used for continuous variables intergroup comparisons, and χ2 for categorical ones. For binary variables, 

odds ratios (OR) and their 95% confidence interval (CI) were calculated by Fisher's exact test. 

Differences were considered statistically significant at p-value<0.05.  

2.3 Machine Learning 

PoAF predictive models were developed using MLR, random forest (RF) and eXtreme gradient 

boosting (XGB) methods. Their quality was assessed by 6 metrics: AUC, sensitivity, specificity, F1-
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score, positive predictive value (PPV) and negative predictive value (NPV). For optimal 

hyperparameters selection, the Grid Search Cross-Validation (GridSearchCV) optimization method 

from sklearn Python library was used. 

The dataset was split into 2 samples: for training and cross-validation (80%) and for final testing 

(20%). The training and cross-validation procedure was performed by stratified k-Fold technique on 10 

folds. The average AUC quality metric was used for best model selection, predictors picking and 

validation, and optimal hyperparameters selection by searching through a grid of acceptable values 

(GridSearchCV). For final testing, the best MLR, RF and XGB models with optimal parameters and 

hyperparameters were trained on 80% of the dataset, and tested on the final testing sample (20%). For 

quality metrics confidence, the assessment procedure was repeated 500 times, followed by metrics 

averaging, performing the initial division randomly using the bootstrapping method (Figure 1). Models 

were developed by utilizing open-source libraries Python version 3.9.16 (scikit-learn version 0.24.2, 

xgboost version 1.5.1).   

2.4 Variables categorization 

This study utilized a multilevel categorization method that was previously reported by the authors 

[12].  

To dichotomize potential predictors, we used grid-step optimization methods 𝝙𝝙=(max-min)/100: 

p-value minimization - Min(p-value), AUC maximization - Max(AUC), quartile method [13], centroid 

method and SHapley Additive exPlanation (SHAP) [14]. The Shapley method allowed us to identify 

thresholds at which the predictor influence function on the endpoint demonstrated singularity, which 

can be observed several times during the range of changes in the continuous attribute values [12]. To 

carry out multi-level categorization, we combined all threshold values identified with indicators 

dichotomization utilizing various methods, including the SHAP method. In this case, close threshold 

values were combined into one by averaging. The centroid method assumed usage of the analyzed 

characteristics median in the comparison groups (with and without PoAF) and values equidistant from 

them (centroids), with the help of which 4 categories were identified for each indicator [14]. The quartile 

method involves identifying 4 categories for each variable based on the results of assessing their 

medians, 2nd and 3rd quartiles [15].  
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For indicators endpoint influence degree assessment, the SHapley Additive exPlanation method 

was used. 

2.5 Study design 

The study design included 5 stages. At the very first of them utilizing intergroup comparisons 

tests, a potential PoAF predictors pool was formed. At the second stage of the study, PoAF prognostic 

models with predictors in a continuous form were developed by ML methods. The prognostic 

significance of the predictor was confirmed by AUC value increase after its inclusion in the model. 

During models development, all variables were considered, regardless of statistically significant 

differences in comparison groups, and hyperparameters were adjusted at the same stage. Models 

development and cross-validation was carried out on 80% of the dataset (derivation cohort), and the 

final testing was carried out on 20% (validation cohort). For further steps, the predictors and 

hyperparameters obtained at this stage were utilized. At the third stage, using various threshold values 

identification methods, binarization of continuous variables was carried out using a derivation cohort, 

and on their basis, PoAF prognostic models were developed, which were validated on the validation 

cohort. At the fourth stage of the study, multi-level categorization of variables was carried out using 4 

approaches. In the first of them, only thresholds identified by the SHAP method were taken into account; 

in the second, the set of threshold values obtained by other dichotomization methods was expanded. In 

addition, thresholds obtained by the centroid method were considered, taking into account the medians 

of the groups with and without PoAF, as well as using quartiles Q1, Q2 and Q3. For risk factors endpoint 

influence degree assessment, MLR models were developed, whose weights were used to code multilevel 

categorical predictors. Risk factors with negative or close to 0 weight coefficients in the MLR model 

were excluded from consideration. At the fifth stage of the study, 4 new PoAF prognostic models were 

developed by XGB method, the predictors of which were obtained by different methods of multilevel 

categorization. To assess statistically significant differences in quality metrics obtained by bootstrapping 

(n=500), 95% CI and Mann-Whitney test comparison results were used.  

3.Results 

3.1 Subject Characteristics 
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Intergroup analysis of clinical, demographic and laboratory parameters demonstrated that patients 

with PoAF were distinguished by older age, an increased prevalence of tricuspid regurgitation (TR) 

among them, lower levels of platelets, total protein and triglycerides in the blood. Individuals in this 

group had higher values of LV ESD, LAD, RAD and RAL, Ao/LV systolic pressure gradient and an 

increased duration of the QT and PQ intervals (Appendix A).  

3.2 Machine Learning Models 

During the second stage, PoAF prognostic models were developed, validated and tested utilizing 

RF, XGB and MLR methods. For all models, the best AUC metric results were obtained by usage of 

ECG indicators (duration of QRS, QT, PQ, RR and P wave intervals), age, RAD, ESD, and TR as 

predictors. Developed models predictive value comparison showed that the XGB and RF methods 

provide higher forecast accuracy compared with MLR (AUC - 0.795 and 0.779 vs 0.698) (Table 1).  

Appendix B shows MLR model weight coefficients. 

Table 1. Assessment of the accuracy of prognostic models for PoAF using predictors in continuous 
form 

Metrics 

Cross-validation Final testing 

MLR XGB RF MLR XGB RF 

AUC 
0.698[0.697;0.
699] 

0.774 [0.773; 
0.775] 

0.77 [0.768; 
0.771] 

0.698 [0.695; 
0.702] 

0.795[0.791; 
0.798] 

0.779[0.775; 
0.782] 

Sen 
0.643[0.641;0.
644] 

0.706 [0.703; 
0.708] 

0.689 [0.687; 
0.691] 

0.643[0.636; 
0.65] 

0.718[0.711; 
0.725] 

0.7[0.694; 
0.707] 

Spec 
0.65[0.649;0.6
52] 

0.716 
[0.714;0.717] 

0.695 [0.694; 
0.697] 0.65[0.647;0.654] 

0.72[0.716; 
0.723] 

0.7[0.697; 
0.704] 

PPV 
0.31[0.309;0.3
11] 

0.384[0.383;0.
386] 

0.363[0.361; 
0.364] 

0.308[0.305; 
0.311] 

0.394[0.391; 
0.397] 

0.371[0.369 
0.375] 

NPV 
0.883[0.883;0.
884] 

0.908[0.908;0.
909] 

0.901[0.901; 
0.902] 

0.884[0.882; 
0.885] 

0.911[0.909; 
0.913] 

0.903[0.901; 
0.905] 

F1-score 
0.416[0.415;0.
418] 

0.495[0.493;0.
497] 

0.473[0.471; 
0.474] 

0.416[0.412; 
0.42] 

0.507[0.503; 
0.511] 

0.485[0.481; 
0.488] 

 

3.3 Categorization 

During third stage, PoAF predictors in a continuous form were dichotomized utilizing searching 

for the optimal cutoff threshold on the grid methods (Min(p-value) and Max(AUC)), along with the 
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SHAP and centroid calculation method (Table 2). Threshold values usage, deviation from which is 

associated with PoAF likelihood increase, allows us to consider binarized data as risk factors for adverse 

events. The risk factor is coded “1” if the predictor value exceeds the threshold with the postfix “+” or 

does not reach it - with the postfix “-”, in other cases - “0”. 

 
 
 
 
Table 2. PoAF continuous predictors dichotomization using different methods 

Predictors Мin(p-value) Мax(AUC) Centroid SHAP 

Age, years 60.0+ 60.0+ 64.0+ 61+ 

LV ESD, cm 3.0+ 3.0+ 3.35+ 
[3.1; 4.1] 
5+ 

RAD, cm 4.12+ 4.12+ 4.4+ [4.2; 5.3] 

QRS, ms 89- 89- 80- 80- 

QT, ms 420+ 382+ 390+ 390+ 

PQ, ms 163+ 163.0+ 155.0+ [170;210] 

RR, ms 882.0+ 882.0+ 925.0+ 

[700; 750]  
[880; 1000] 
 1100 

P, ms 120+ 100+ 100+ 130+ 
Abbreviations: LV - left ventricle; LV ESD - end systolic dimension, RAD - right atrium 

transverse size. 
 

Study results showed substantial variation in threshold values across binarization methods. For 

example, the cutoff point for QRS according to SHAP was 80 ms, while when maximizing AUC, the 

cutoff point was fixed at 89 ms, and for the P wave, values above 130 ms were risk factors, while for 

Max(AUC) - above 100 ms (Table 2). The first three dichotomization methods considered isolated 

indicators and did not take into account predictive models. The SHAP method was applied to a 

multifactorial XGB model and the threshold value were defined as the point where the shap-value 

exceeded the level of 0.2 arbitrary units Thus, due to dichotomization, the following PoAF risk factors 

were identified: age over 61 years, RAD more than 4.2 cm, ESD - 3.1 cm, QRS duration less than 80 

ms, QT more than 390 ms, P - 130 ms, PQ - 170 ms, RR - 700 ms (Figure 2). 
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Annotation: The blue and red dotted lines indicate the cutoff thresholds. Abbreviations: LV - left 

ventricle, ESD - LV end systolic dimension, RAD - right atrium transverse size. 

Using the QRS diagram as an example (Figure 2), it can be seen that the probability of PoAF 

developing in the range from 40 to 80 ms remains consistently high, but sharply decreases at its values 

≥ 90 ms. Exceeding the QT parameter value more than 390 ms increases the risk of arrhythmia, but its 

maximum probability is fixed when the QT value is above 450 ms. Assessing the dynamics of changes 

in shap-value allows us to explain the relationship between various predictor values and study endpoint, 

which was the basis for utilizing this method in multilevel categorization procedures. 

At the fourth stage of the study, utilizing various multilevel categorization methods, 4 groups of 

PoAF risk factors were formed. The first pool of risk factors was obtained from the shap-value analysis 

results (Figure 2). The second pool expanded the first due to threshold values obtained at the third stage 

of the study by several dichotomization methods. The third group of risk factors was represented by the 

predictors medians in the comparison groups and their centroids, and the fourth group used threshold 

values corresponding to predictors quartiles. To encode multilevel categorical predictors values, we used 

the weight coefficients (WC) of the MLR models developed for each risk factors group (Table 3). We 

call the approach that ensures the formation of a second pool of risk factors and their WC - multimetric 

categorization.  

Table 3. Predictors weight coefficients and thresholds obtained by multilevel categorization 
methods  

Predictors 

SHAP 
Multimetric 
categorization 

Group medians and 
centroids Quartiles 

Thresholds WC Thresholds WC Thresholds WC Thresholds WC 

Age, years 61+ 0.630 
[60; 64] 
64+ 

 
0.621 
0.689 

[63; 66] 
66+ 

0.353 
0.36 

[58; 64] 
[64; 69] 
69+ 

0.748 
0.33 
0.851 

ESD, cm 
[3.1; 4.1] 
5+ 

1.028 
1.226 

[3.1; 4.1] 
5+ 

1.0 
1.15 

[3.3; 3.35] 
3.35+ 

0.828 
0.167 

[3.1; 3.3] 
[3.3; 3.8] 
3.8+ 

1.931 
1.175 
1.421 

RAD, cm [4.2; 5.3] 0.457 [4.2; 5.3] 0.533 
[4.3; 4.5] 
4.5+ 

0.558 
0.649 

[3.8.4.3] 
[4.3; 4.8] 
4.8+ 

0.906 
1.377 
0.877 

QRS, ms 80- 0.918 80- 0.942 80- 0.98 [80; 100] 1.302 
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Predictors 

SHAP 
Multimetric 
categorization 

Group medians and 
centroids Quartiles 

Thresholds WC Thresholds WC Thresholds WC Thresholds WC 

QT, ms 390+ 1.033 390+ 1.027 
[380; 400] 
400+ 

0.672 
1.028 

[360; 395] 
[395; 420] 
420+ 

0.598 
0.269 
1.05 

RR, ms 

[700; 750] 
[880; 1000] 
1100 

1.306 
1.211 
2.327 

[700; 750] 
[880; 1000] 
1100 

1.286 
1.231 
2.406 

[900; 950] 
950+ 

1.256 
0.629 

[800; 920] 
[920; 1080] 
1080+ 

0.324 
0.398 
0.429 

PQ, ms [170; 210] 0.991 [170; 210] 1 160+ 0.523 

[140; 160] 
[160; 180] 
180+ 

0.658 
1.712 
0.864 

P, ms 130+ 1.547 
[100; 130] 
130+ 

2.32 
3.35 100+ 5.886 100+ 4.55 

TR 1 0.683 1 0.703 1 0.785 1 0.721 
 
Abbreviations: WC - weight coefficient; LV- left ventricular; ESD - LV end systolic dimension, 

RAD - right atrium transverse size, TR - Tricuspid regurgitation. 
 

3.4 Models based on multilevel categorical predictors 

At the fifth stage of the study, based on multilevel predictors obtained by various methods, 4 

PoAF prognostic models were developed by XGB (Table 4). The best predictive properties were 

demonstrated by the model with predictors identified by the multilevel categorization method (AUC 

0.802). The latter had comparable accuracy with the models including continuous variables or risk 

factors obtained by the SHAP method (AUC 0.802 vs. 0.795). A comparative accuracy assessment 

between prognostic models with predictors identified by dichotomization (Appendix C) and by 

multimetric multilevel categorization methods demonstrated the advantages of the latter, which was 

confirmed by statistically significant AUC metric differences (p-value <0.001). Besides, it allowed us 

to explain PoAF prognosis based on assessment results of predictors threshold values and WC (Table 

3). Taking these data into account, it was concluded that in patients with coronary artery disease after 

CABG, the greatest likelihood of PoAF developing is associated with a P wave duration of ≥ 130 ms 

(WC - 3.35) and in the range [100-130 ms] with WC - 2.32, RR ≥ 1100 ms (WC - 2.41), as well as with 

RR in the range of 700-1100 ms, QT above 390 ms, PQ from 170 to 210 ms and QRS ≤ 80 ms. PoAF 
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correlation was established for ESD in the range from 3.1 to 4.1 cm and above 5 cm, RAD - from 4.2 to 

5.3 cm, age over 60 years and TR. The assessment of individual PoAF predictors' influence on its 

development was performed utilizing the SHAP and XGB methods (Figure 3). The strongest influence 

is demonstrated by the QT indicator (shap-value 0.94), TR presence, the duration of the RR intervals 

and RAD. A low PoAF development probability is associated with the younger age (patients under 60 

years), ESD below 3 cm and RAD below to 4.1 cm, PQ interval less than 150 ms and QRS above 100 

ms.  

Table 4. Accuracy assessment of PоAF prognostic models based on predictors with multilevel 

categorization 

Metrics Multilevel SHAP 

Multimetric 

categorization 

Group medians and 

centroids Quartiles 

AUC 0.795[0.772;0.819] 0.802[0.779;0.824] 0.7[0.67;0.771] 0.66[0.63;0.691] 

Sen 0.735[0.691;0.78] 0.741[0.698;0.784] 0.65[0.607;0.693] 0.6[0.549;0.651] 

Spec 0.71[0.688;0.732] 0.713[0.693;0.733] 0.652[0.63;0.675] 0.618[0.576;0.66] 

PPV 0.383[0.356;0.41] 0.386[0.366;0.407] 0.313[0.296;0.33] 0.21[0.191;0.229] 

NPV 0.917[0.903;0.931] 0.919[0.907;0.932] 0.885[0.873;0.898] 0.902[0.89;0.914] 

F1-score 0.503[0.471;0.535] 0.507[0.482;0.532] 0.422[0.4;0.444] 0.31[0.285;0.335] 

 
4.Conclusion  

In recent years, prognostic models utilizing ML methods are being developed, wide usage of 

which in clinical practice is limited by the complexity of prognostic results interpretation. Promising 

tools for this problem solving are explainable artificial intelligence (XAI) algorithms, the elements of 

which includes the predictors threshold values determination and their ranking according to their 

influence intensity on the endpoint. Predictors threshold values determination is carried out using their 

categorization, which allows to detail the relationship between indicators of the clinical and functional 

patients status with the resulting variable. According to the literature, the most accessible method of 

multilevel categorization is descriptive statistics with the medians, quartiles or quantile calculation [16]. 
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However, most of the categorization criticisms are associated precisely with this approach, which is 

primarily due to the dependence of such threshold values on a specific sample, lack of relationship with 

the clinical context, ignoring possible non-linear relationships, etc. [16]. An alternative method that 

takes into account the clinical context is searching for optimal threshold values based on minimization 

or maximization of objective functions, such as Min(p-value) or Max(AUC).  

Recent literature about PoAF prediction problem analysis showed that utilizing categorization 

methods, PoAF risk factors were identified, which included the age of patients over 60 years [7, 17], 66 

years [5, 18] or 70 years [19], increased LA size [5, 20], including with LAD > 4.5 cm [18] or > 3.9 cm 

[11] and reduced LVEF < 30% [7], increased P wave duration according to standard (>116 ms) [21, 22]. 

A number of anamnestic data are also validated as risk factors for PoAF: male gender [5, 23], the 

presence of arterial hypertension, chronic heart failure, chronic obstructive pulmonary disease, chronic 

kidney disease, diabetes mellitus [5], rheumatic heart disease [18, 23], mitral valve disease [3], previous 

cardiac surgery, metabolic syndrome and obesity [5, 6]. In our study, anamnestic features did not 

demonstrate predictive potential. The TR and RAD indicators were firstly verified as PoAF predictors. 

Our study confirmed the predictive value of age and ECG in relation to PoAF, but did not reveal a 

relationship between laboratory data and LVEF with the PoAF development. 

Utilizing the patients with coronary artery disease after the CABG database example, we analyzed 

the effectiveness of various predictors threshold values searching methods, deviations from which 

increased their predictive potential and allowed to attribute them as PoAF risk factors. It was identified 

that the SHAP method, which considered as one of the promising XAI technologies, is a useful 

categorization tool due to the effective determination of cut-off thresholds, in particular for multilevel 

categorization and predictors relationship analysis both in continuous and categorical forms with the 

study endpoint. At the same time, multilevel categorical predictors obtained by combining SHAP data 

with other dichotomization methods results have been shown to provide higher predictive accuracy. 

Potential risks of information loss during new categorization methods usage were overcome by detailing 

knowledge about the interconnection of individual risk factors with the study endpoint. This was 

confirmed by predictive models quality criteria comparison for predictors both in continuous and 

multilevel categorical forms. Thus, for the best model with continuous predictors, AUC was 0.795, while 
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utilizing multimetric categorization, it was 0.802. By providing threshold-based categorical predictors 

ranked by their weights, the proposed method could facilitate bedside risk stratification and decision-

making in CABG patients, bridging the gap between high-performance ML models and clinical 

usability. 

Dataset limitations  

Study limitations, which may limit generalizability include the retrospective design and single-

center data source. The dataset’s temporal span (2008–2023) may also introduce heterogeneity in 

perioperative management practices. The full precise dataset can be found at 

https://github.com/NikitaKuksin/DataSet_MultilevelPredictorsCategorizationPostCABG_AtrialFibrill

ation 
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Supplemental Material 

Appendix A. 

Clinical and functional characteristics of patients with coronary artery disease  

Predictor Group PoAF (n=280) Group without PoAF 
(n=1025) 

OR [95% 
CI] 

p-value 

 
Ме (Q1; 
Q3)/abs Mean ± SD/% Ме (Q1; Q3) Mean ± SD   

Age, years 66 (61; 71) 65.7 ±  6.9 63 (58; 69) 62.9 ± 7.78 - <0.000001 

Female, abs. 
(%) 76 27.14% 237 (23.12%)  

1.24 [0.917; 
1.673] 0.188 

Height, cm 170 (165; 176) 170.1 ± 8.2 170 (165; 175) 170  ± 8 - 0.802 

Weight, kg 80 (73; 90) 82.5 ± 14 80 (73; 90) 82.1 ± 13 - 0.86 

BMI, 𝑘𝑘𝑘𝑘/𝑚𝑚2 
27.97 (25.3; 

31.2) 28.56± 4.85 
28.1 (25.1; 

31.2) 28.51±4.69 - 0.736 

LVEF, % 60 (54; 63.5) 57.6 ±8.5 60 (51; 64) 57.4 ±9.5 - 0.9 

RLVMI, c. u. 
1.01 (0.86; 

1.18) 1.05 ±0.307 
0.98 (0.84; 

1.16) 1.02 ±0.264 - 0.263 

RTI, c. u. 
0.408 (0.363; 

0.455) 0.415 ±0.083 
0.417 (0.37; 

0.458) 0.42 ±0.088 - 0.442 

LV ESD, cm 3.3 (3.2; 3.7) 3.49 ±0.58 3.35 (3; 3.8) 3.45 ±0.59 - 0.185 

LV EDD, cm 5.1 (4.8; 5.425) 5.15  ± 0.58 5.1 (4.7; 5.4) 5.1  ± 0.56 - 0.284 

Systolic 
pressure 

gradient Ao/LV, 
mm Hg 7 (5; 9) 8.67 ± 7.34 6 (5; 8) 7.95 ± 7.88 - 0.048 

MPAP, mm Hg 25 (21; 30) 27.8 ± 8.97 25 (22; 28) 26.9 ± 7.77 - 0.225 

LAL, cm 3.9 (3.6; 4.2) 3.93±0.56 3.9 (3.6; 4.3) 3.98 ± 0.6 - 0.339 

LAD, cm 4.6 (4; 5.1) 4.57±0.74 4.3 (3.8; 4.9) 4.38±0.73 - 0.0002 

Indexed LA 
volume, ml/m2 

33.3 (24.5; 
43.1) 33.69±17.9 

30.2 (23.7; 
39.3) 32.21±16.4 - 0.125 

RAL, cm 3.8 (3.5; 4.1) 3.8±0.5 3.7 (3.4; 4) 3.71±0.52 - 0.0023 

RAD, cm 4.5 (4.1; 4.9) 4.5±0.64 4.3 (3.8; 4.8) 4.28±0.66 - 0.0000033 

P, ms 100 (100; 100) 102.44±8.5 100 (100; 100) 101.99±8 - 0.69 

PQ, ms 160 (140; 180) 161.3±32.7 150 (140; 180) 156.8±36.7 - 0.025 

QRS, ms 80 (80; 100) 88.97± 14.97 80 (80; 100) 94.4± 19.29 - 0.00036 

RR, ms 
950 (895; 

1090) 961.8±166 
900 (800; 

1080) 943.7±166.5 - 0.129 
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Predictor Group PoAF (n=280) 
Group without PoAF 

(n=1025) 
OR [95% 

CI] p-value 

QT, ms 400 (380; 430) 396.8±34.7 380 (360; 420) 387.9±38.5 - 0.00143 

Creatinine, 
µmol/l 

92.83 (79.1; 
110) 95.3±25.7 97 (83; 110) 98.7±24.2 - 0.036 

GFR, ml/min 
77.9 (62.6; 

95.8) 83.5±54.2 
77.2 (63.6; 

95.8) 80.9±26.1 - 0,841 

CHF III-IV FC, 
abs. (%) 43 (15.35%)  124 (12.1%)  

1.3 [0.91; 
1.93] 0.156 

History of MI, 
abs. (%) 32 (18.5%)  143 (20%)  

0.91 [0.6; 
1.4] 0.75 

Stable angina 
pectoris III-IV 

FC 65 (34.6%)  247 (37.6%)  
1.14 [0.81; 

1.61] 0.478 

Extracardiac 
arteriopathy 96 (34.3%)  342 (33.3%)  

1.04 [0.79; 
1.38] 0.776 

AH, abs. (%) 165 (95.38%)  657 (91.76%)  
1.7 [0.81; 

3.7] 0.188 

Aortic stenosis, 
abs. (%) 6 (2.1%)  20 (1.95%)  

1.24 [0.49; 
3.15] 0.62 

TR, abs. (%) 51 (18.21%)  112(10.93%)  
1.8 [1.26; 

2.6] 0.00154 

MR, abs. (%) 88 (31.4%)  295 (28.78%)  
1.13 [0.85; 

1.51] 0.415 

AR, abs. (%) 20 (7.15%)  66 (6.4%)  
1.12 [0.66; 

1.88] 0.683 

CKD, abs. (%) 74 (26.43%)  262 (25.56%)  
1.04 [0.77; 

1.41] 0.758 

COPD, abs. (%) 23 (13.29%)  82 (11.45%)  
1.2 [0.72; 

1.95] 0.59 

DM, abs. (%) 45 (26.01%)  171 (23.88%)  
1.1 [0.77; 

1.64] 0.63 

Previous stroke, 
abs. (%) 12 (6.94%)  46 (6.42%)  

1.1 [0.56; 
2.1] 0.94 

Hemoglobin, g/l 142 (131; 152) 141±16.6 143(131; 153) 141±16.9 - 0.77 

Red blood 
cells,1012/l 

4.69 (4.31; 
5.03) 4.65±0.58 

4.69 (4.30; 
5.06) 4.65±0.58 - 0.98 

Leukocytes,109/
l 6.8 (5.7; 8) 7± 2 6.9 (5.8; 8.37) 7.2±2.2 - 0.175 

Lymphocytes,10
9/l 

1.87 (1.44; 
2.42) 1.9±0.73 2 (1.53; 2.53) 2.1±0.92 - 0.09 
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Predictor Group PoAF (n=280) 
Group without PoAF 

(n=1025) 
OR [95% 

CI] p-value 

Platelets,109/l 228 (182; 266) 225±57 232 (192; 273) 237±65 - 0.0325 

Total 
cholesterol,mmo

l/l 4.35 (3.66; 5.4) 4.6±1.36 
4.45 (3.7; 

5.43) 4.7±1.41 - 0.132 

Glucose, mmol/l 
5.63 (5.11; 

6.22) 6±1.7 
5.67 (5.13; 

6.52) 6.2±1.8 - 0.134 

Total protein, 
g/l 

70.9 (66.3; 
73.7) 69.6±7.3 

71.4 (67.9; 
75.2) 71.1±7.8 - 0.00396 

Total bilirubin, 
µmol/l 

16.9 (12.1; 
23.825) 19.3±10 

16.3 (11.7; 
22.96) 18.8±10.2 - 0.358 

Triglycerides, 
mmol/l 

1.48 (1,15; 
1.88) 1.68±1.1 1.63 (1.2; 2.2) 1.82±0.94 - 0.0022 

Urea, mmol/l 6 (5; 7.13) 6.37±1.94 6 (4.97; 7.35) 6.47±2.29 - 0.98 

Thrombin time, 
s 

19.6 (16.6; 
21.5) 20±6.14 

19.9 (17.1; 
21.4) 20.1±7.2 - 0.67 

PTI, % 93.6 (86; 99.7) 92±14.58 
94 (86.75; 

102) 94.26±25.3 - 0.172 

INR 1.05 (1; 1.13) 1.12±0.55 
1.03 (0.98; 

1.1) 1.06±0.124 - 0.082 

SBP, mm Hg 130 (130;150) 137±21 130 (125; 140) 135±20 - 0.0193 

DBP, mm Hg 80 (75; 80) 80±8 80 (70; 80) 79±8.5 - 0.00775 

Heart rate, 
beats/min 68 (62; 75) 70±12 68 (62; 72) 69±10 - 0.178 

 
Abbreviations: CI - confidence interval, BMI - body mass index, LV - left ventricle, LVEF - LV 

ejection fraction, RLVMI - relative left ventricular myocardial mass index, RTI - relative thickness 
index of left ventricle posterior wall, LV ESD - end systolic dimension, LV EDD - end diastolic 
dimension, MPAP - mean pulmonary artery pressure, LAL - left atrium medial-lateral size, LAD - left 
atrium anterior-posterior size, RAL - right atrium longitudinal size, RAD - right atrium transverse size, 
GFR - glomerular filtration rate, CHF - Congestive Heart Failure, FC- functional class, AH - arterial 
hypertension, TR - Tricuspid regurgitation, MR -  mitral regurgitation, AR - aortic regurgitation , CKD 
- Chronic kidney disease, COPD- chronic obstructive pulmonary disease, DM - diabetes mellitus, PTI - 
prothrombin time index, INR- international normalized ratio, SBP - systolic blood pressure, DBP - 
diastolic blood pressure. 
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Appendix B. 
Weighting coefficients in a multivariate logistic regression model without predictors standardization 

Predictors Weight coefficients 
Age 0.036538 
RAD 0.476447 
TR 0.643446 

QRS -33.214139 
QT 12.580338 
RR 0.551974 
PQ 1.767283 
P 14.158973 

ESD 0.140284 
Intercept -10.54463818 

Abbreviations: RAD - right atrium transverse size, TR - Tricuspid regurgitation 
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