

MULTILEVEL AF PREDICTORS CATEGORIZATION

Multilevel predictors categorization for post-CABG atrial fibrillation prediction

Karina I. Shakhgeldyan^{1,2}, DScTech, Vladislav Y. Rublev², MD, Nikita S. Kuksin², Boris I. Geltsner², MD, PhD, Regina L. Pak², MD

¹Center of Artificial Intelligence, Vladivostok State University, Vladivostok, Russia;

²Laboratory of Big Data Analysis in Medicine, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia;

Corresponding Author Contact Information

Vladislav Yurievich Rublev, Laboratory of Big Data Analysis in Medicine, School of Medicine and Life Sciences, Far Eastern Federal University. 690922, Ajax Village, 10, building 25, Russia; dr.rublev.v@gmail.com; 8 (964) 453-07-00.

Conflict of interest.

The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article, they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (the project FZNS-2023-0010 of the State Assignment of the Far Eastern Federal University - FEFU)

MULTILEVEL AF PREDICTORS CATEGORIZATION

Author list**Karina Iosifovna Shakhgeldyan**

D.Sc. in Engineering, Associate Professor, Director of the Institute of Information Technologies, VVSU, Head of the Laboratory for Big Data Analysis in Medicine and Healthcare, School of Medicine and Life Sciences, FEFU. Email: carinashakh@gmail.com

Vladislav Yurievich Rublev

Junior Researcher, Laboratory for Big Data Analysis in Healthcare and Biomedicine, School of Medicine and Life Sciences, FEFU. Email: dr.rublev.v@gmail.com

Nikita Sergeevich Kuksin

PhD student, Institute of Mathematics and Computer Technologies, FEFU. Email: kuksin.ns@dvfu.ru

Boris Izrailevich Geltser

D.Sc. in Medicine, Professor, Corresponding Member of the Russian Academy of Sciences, Deputy Director for Research, School of Medicine and Life Sciences, FEFU. Email: boris.geltser@vvsu.ru

Regina Leonidovna Pak

Junior Researcher at the Laboratory for Big Data Analysis in Healthcare and Biomedicine, Assistant Lecturer at the Department of Clinical Medicine, School of Medicine and Life Sciences, FEFU. Email: nonchalant@bk.ru

Author contributions (CRediT):

Karina I. Shakhgeldyan: Writing – original draft, Visualization, Validation, Software, Methodology, Funding acquisition, Data curation.

Vladislav Y. Rublev: Writing – original draft, Resources, Supervision, Formal analysis, Data curation, Conceptualization.

Nikita S. Kuksin: Writing – original draft, Investigation, Funding acquisition.

Boris I. Geltser: Writing – original draft, review & editing, Supervision, Conceptualization, Resources, Methodology.

Regina L. Pak: – Writing – original draft, Conceptualization, Resources, Data curation.

MULTILEVEL AF PREDICTORS CATEGORIZATION

Abstract

Background

Postoperative atrial fibrillation (PoAF) is a common complication after coronary artery bypass grafting (CABG). Despite its association with increased risk of ischemic stroke, bleeding, acute renal failure and mortality there is still no ideal predictive tool with proper clinical interpretability.

Methods

A retrospective single-center cohort study enrolled 1305 electronic medical records of patients with elective isolated CABG. PoAF was identified in 280 (21.5%) patients. Prognostic models with continuous variables were developed utilizing multivariate logistic regression (MLR), random forest and eXtreme gradient boosting methods. Predictors were dichotomized via grid search for optimal cut-off points, centroid calculation, and Shapley additive explanation (SHAP). For multilevel categorization, we proposed to use threshold values combination identified during dichotomization, as well as ranking cut-off thresholds by MLR weighting coefficients (multimetric categorization method).

Results

Based on multistage selection, nine PoAF predictors were identified and validated. After categorization, prognostic models with continuous and multilevel categorical variables were developed. Multilevel categorical models advantage lies in their ability to explain PoAF prediction results and provide clinical interpretation, with comparable quality (AUC: 0.802 and 0.795).

Conclusions

We introduce a novel multimetric multilevel categorization approach that integrates SHAP-derived cut-offs with conventional dichotomization methods and MLR weighting. This method improved interpretability without compromising predictive performance (AUC 0.802 vs 0.795).

Keywords: prognostic models, multilevel categorization, dichotomization, postoperative atrial fibrillation, stochastic gradient boosting, SHapley Additive exPlanations (SHAP) method.

MULTILEVEL AF PREDICTORS CATEGORIZATION

Highlights

1. Validation of new 1st diagnosed atrial fibrillation predictors were performed in patients with coronary heart disease after coronary artery bypass grafting with subsequent development of predictive models utilizing machine learning methods.
2. A new multilevel categorization method was tested, allowing to identify threshold values of predictors with the greatest predictive value, which were classified as risk factors for postoperative atrial fibrillation.
3. The best quality metrics (AUC - 0.802) were demonstrated by a stochastic gradient boosting prognostic model based on predictors identified by the multilevel categorization method.

MULTILEVEL AF PREDICTORS CATEGORIZATION

1. Introduction.

Postoperative atrial fibrillation (PoAF) affects 20-40% of patients after coronary artery bypass grafting (CABG) [1], with stable rates despite preventive strategies [2,3] while some authors have even shown a potential trend to increase [4]. PoAF increases the risk of stroke, bleeding, and renal failure approximately fourfold, and doubles mortality at 30 days and 6 months [5]. The lack of a unified pathophysiological model has driven the creation of forecasting tools to personalize risk assessment [7-9].

Among PoAF prediction studies, the PoAF score [7] developed using MLR methods achieved an accuracy by an area under the ROC curve (AUC) of 0.63-0.65, with 0.6 sensitivity and 0.65 specificity values [8, 10]. Such limited accuracy prompted the use of new machine learning (ML) methods, allowing to improve model quality measured by AUC up to 0.7-0.75 [8, 11]. These models employed continuous and dichotomous predictors, with binary variables used to assess concomitant diseases. However, previous works lacked clinical justification for threshold values used in PoAF risk prediction. Multilevel categorization was only applied to age in some studies, with cut-off points set arbitrarily [7, 11].

This study aimed to develop new prognostic models of PoAF in patients with coronary artery disease after isolated CABG based on preoperative predictors set and their multilevel categorization efficiency evaluation to improve prognosis quality and its clinical interpretation.

2. Material and methods

2.1 Data

Single-center cohort retrospective study results are presented, during which electronic health records data of patients with coronary artery disease admitted for planned isolated CABG to the Vladivostok “Primorye Regional Clinical Hospital No. 1” cardiac surgery department from 2008 to 2023 were analyzed. Exclusion criteria included the presence of atrial fibrillation (of any form) in anamnesis, as well as combination of CABG with any other surgery. Thus, the final dataset was represented by 1305 patients (992 men and 313 women) aged 35 to 83 years. The study protocol met local institutional requirements and received full approval; patient consent was not required. Far eastern federal university review board “Ethics approval: IRB protocol number: №1/3”, were approved on 19/03/2023. As the

MULTILEVEL AF PREDICTORS CATEGORIZATION

study involved a retrospective review of medical records, the requirement for patient consent was waived. Data were accessed from 19/03/23 to 12/08/23 for research purposes. During this period authors had access to information that could identify individual participants during data collection (DOB and medical record number).

First diagnosed PoAF episode was considered as the endpoint. AF episodes lasting more than 30 seconds, verified by the results of continuous electrocardiogram monitoring for at least 96 hours after CABG, were considered as PoAF development evidence. The PoAF presence was coded “1”, the absence – “0”. Thus, two patient groups were identified among the examined cohort. The first included 280 (21.5%) patients with AF paroxysms recorded during postoperative period in the hospital, the second - 1025 (78.5%) patients without cardiac arrhythmias.

The preoperative clinical and functional status of patients was assessed on the first day of hospital treatment by 130 factors, the main ones of which are presented in Appendix A. In addition to demographic, anthropometric, anamnestic data and physical examination results, clinical blood test indicators were analyzed. The diameters of the left (LAD) and right (RAD) atria, longitudinal dimensions of the left (LAL) and right (RAL) atrium, end-systolic (ESD) and diastolic (EDD) dimensions of the left ventricular (LV), ejection fraction (LVEF), and mean pulmonary artery pressure (MPAP) were determined. The ECG results were also analyzed: duration of P wave and QRS complex, PQ, QT intervals and RR.

2.2 Statistical Methods

Continuous characteristics distribution according to the Kolmogorov-Smirnov test differed from normal, so consequently nonparametric mathematical statistics methods were used for them. The indicators were presented as median (Me) and interquartile ranges (Q1; Q3), the Mann-Whitney test was used for continuous variables intergroup comparisons, and χ^2 for categorical ones. For binary variables, odds ratios (OR) and their 95% confidence interval (CI) were calculated by Fisher's exact test. Differences were considered statistically significant at $p\text{-value}<0.05$.

2.3 Machine Learning

PoAF predictive models were developed using MLR, random forest (RF) and eXtreme gradient boosting (XGB) methods. Their quality was assessed by 6 metrics: AUC, sensitivity, specificity, F1-

MULTILEVEL AF PREDICTORS CATEGORIZATION

score, positive predictive value (PPV) and negative predictive value (NPV). For optimal hyperparameters selection, the Grid Search Cross-Validation (GridSearchCV) optimization method from sklearn Python library was used.

The dataset was split into 2 samples: for training and cross-validation (80%) and for final testing (20%). The training and cross-validation procedure was performed by stratified k-Fold technique on 10 folds. The average AUC quality metric was used for best model selection, predictors picking and validation, and optimal hyperparameters selection by searching through a grid of acceptable values (GridSearchCV). For final testing, the best MLR, RF and XGB models with optimal parameters and hyperparameters were trained on 80% of the dataset, and tested on the final testing sample (20%). For quality metrics confidence, the assessment procedure was repeated 500 times, followed by metrics averaging, performing the initial division randomly using the bootstrapping method (Figure 1). Models were developed by utilizing open-source libraries Python version 3.9.16 (scikit-learn version 0.24.2, xgboost version 1.5.1).

2.4 Variables categorization

This study utilized a multilevel categorization method that was previously reported by the authors [12].

To dichotomize potential predictors, we used grid-step optimization methods $\Delta=(\max-\min)/100$: p-value minimization - Min(p-value), AUC maximization - Max(AUC), quartile method [13], centroid method and SHapley Additive exPlanation (SHAP) [14]. The Shapley method allowed us to identify thresholds at which the predictor influence function on the endpoint demonstrated singularity, which can be observed several times during the range of changes in the continuous attribute values [12]. To carry out multi-level categorization, we combined all threshold values identified with indicators dichotomization utilizing various methods, including the SHAP method. In this case, close threshold values were combined into one by averaging. The centroid method assumed usage of the analyzed characteristics median in the comparison groups (with and without PoAF) and values equidistant from them (centroids), with the help of which 4 categories were identified for each indicator [14]. The quartile method involves identifying 4 categories for each variable based on the results of assessing their medians, 2nd and 3rd quartiles [15].

MULTILEVEL AF PREDICTORS CATEGORIZATION

For indicators endpoint influence degree assessment, the SHapley Additive exPlanation method was used.

2.5 Study design

The study design included 5 stages. At the very first of them utilizing intergroup comparisons tests, a potential PoAF predictors pool was formed. At the second stage of the study, PoAF prognostic models with predictors in a continuous form were developed by ML methods. The prognostic significance of the predictor was confirmed by AUC value increase after its inclusion in the model. During models development, all variables were considered, regardless of statistically significant differences in comparison groups, and hyperparameters were adjusted at the same stage. Models development and cross-validation was carried out on 80% of the dataset (derivation cohort), and the final testing was carried out on 20% (validation cohort). For further steps, the predictors and hyperparameters obtained at this stage were utilized. At the third stage, using various threshold values identification methods, binarization of continuous variables was carried out using a derivation cohort, and on their basis, PoAF prognostic models were developed, which were validated on the validation cohort. At the fourth stage of the study, multi-level categorization of variables was carried out using 4 approaches. In the first of them, only thresholds identified by the SHAP method were taken into account; in the second, the set of threshold values obtained by other dichotomization methods was expanded. In addition, thresholds obtained by the centroid method were considered, taking into account the medians of the groups with and without PoAF, as well as using quartiles Q1, Q2 and Q3. For risk factors endpoint influence degree assessment, MLR models were developed, whose weights were used to code multilevel categorical predictors. Risk factors with negative or close to 0 weight coefficients in the MLR model were excluded from consideration. At the fifth stage of the study, 4 new PoAF prognostic models were developed by XGB method, the predictors of which were obtained by different methods of multilevel categorization. To assess statistically significant differences in quality metrics obtained by bootstrapping (n=500), 95% CI and Mann-Whitney test comparison results were used.

3. Results

3.1 Subject Characteristics

MULTILEVEL AF PREDICTORS CATEGORIZATION

Intergroup analysis of clinical, demographic and laboratory parameters demonstrated that patients with PoAF were distinguished by older age, an increased prevalence of tricuspid regurgitation (TR) among them, lower levels of platelets, total protein and triglycerides in the blood. Individuals in this group had higher values of LV ESD, LAD, RAD and RAL, Ao/LV systolic pressure gradient and an increased duration of the QT and PQ intervals (Appendix A).

3.2 Machine Learning Models

During the second stage, PoAF prognostic models were developed, validated and tested utilizing RF, XGB and MLR methods. For all models, the best AUC metric results were obtained by usage of ECG indicators (duration of QRS, QT, PQ, RR and P wave intervals), age, RAD, ESD, and TR as predictors. Developed models predictive value comparison showed that the XGB and RF methods provide higher forecast accuracy compared with MLR (AUC - 0.795 and 0.779 vs 0.698) (Table 1). Appendix B shows MLR model weight coefficients.

Table 1. Assessment of the accuracy of prognostic models for PoAF using predictors in continuous form

Metrics	Cross-validation			Final testing		
	MLR	XGB	RF	MLR	XGB	RF
AUC	0.698[0.697;0.699]	0.774 [0.773;0.775]	0.77 [0.768;0.771]	0.698 [0.695;0.702]	0.795[0.791;0.798]	0.779[0.775;0.782]
Sen	0.643[0.641;0.644]	0.706 [0.703;0.708]	0.689 [0.687;0.691]	0.643[0.636;0.65]	0.718[0.711;0.725]	0.7[0.694;0.707]
Spec	0.65[0.649;0.652]	0.716 [0.714;0.717]	0.695 [0.694;0.697]	0.65[0.647;0.654]	0.72[0.716;0.723]	0.7[0.697;0.704]
PPV	0.31[0.309;0.311]	0.384[0.383;0.386]	0.363[0.361;0.364]	0.308[0.305;0.311]	0.394[0.391;0.397]	0.371[0.369;0.375]
NPV	0.883[0.883;0.884]	0.908[0.908;0.909]	0.901[0.901;0.902]	0.884[0.882;0.885]	0.911[0.909;0.913]	0.903[0.901;0.905]
F1-score	0.416[0.415;0.418]	0.495[0.493;0.497]	0.473[0.471;0.474]	0.416[0.412;0.42]	0.507[0.503;0.511]	0.485[0.481;0.488]

3.3 Categorization

During third stage, PoAF predictors in a continuous form were dichotomized utilizing searching for the optimal cutoff threshold on the grid methods (Min(p-value) and Max(AUC)), along with the

MULTILEVEL AF PREDICTORS CATEGORIZATION

SHAP and centroid calculation method (Table 2). Threshold values usage, deviation from which is associated with PoAF likelihood increase, allows us to consider binarized data as risk factors for adverse events. The risk factor is coded “1” if the predictor value exceeds the threshold with the postfix “+” or does not reach it - with the postfix “-”, in other cases - “0”.

Table 2. PoAF continuous predictors dichotomization using different methods

Predictors	Min(p-value)	Max(AUC)	Centroid	SHAP
Age, years	60.0+	60.0+	64.0+	61+
LV ESD, cm	3.0+	3.0+	3.35+	[3.1; 4.1] 5+
RAD, cm	4.12+	4.12+	4.4+	[4.2; 5.3]
QRS, ms	89-	89-	80-	80-
QT, ms	420+	382+	390+	390+
PQ, ms	163+	163.0+	155.0+	[170;210]
RR, ms	882.0+	882.0+	925.0+	[700; 750] [880; 1000] 1100
P, ms	120+	100+	100+	130+

Abbreviations: LV - left ventricle; LV ESD - end systolic dimension, RAD - right atrium transverse size.

Study results showed substantial variation in threshold values across binarization methods. For example, the cutoff point for QRS according to SHAP was 80 ms, while when maximizing AUC, the cutoff point was fixed at 89 ms, and for the P wave, values above 130 ms were risk factors, while for Max(AUC) - above 100 ms (Table 2). The first three dichotomization methods considered isolated indicators and did not take into account predictive models. The SHAP method was applied to a multifactorial XGB model and the threshold value were defined as the point where the shap-value exceeded the level of 0.2 arbitrary units. Thus, due to dichotomization, the following PoAF risk factors were identified: age over 61 years, RAD more than 4.2 cm, ESD - 3.1 cm, QRS duration less than 80 ms, QT more than 390 ms, P - 130 ms, PQ - 170 ms, RR - 700 ms (Figure 2).

MULTILEVEL AF PREDICTORS CATEGORIZATION

Annotation: The blue and red dotted lines indicate the cutoff thresholds. Abbreviations: LV - left ventricle, ESD - LV end systolic dimension, RAD - right atrium transverse size.

Using the QRS diagram as an example (Figure 2), it can be seen that the probability of PoAF developing in the range from 40 to 80 ms remains consistently high, but sharply decreases at its values ≥ 90 ms. Exceeding the QT parameter value more than 390 ms increases the risk of arrhythmia, but its maximum probability is fixed when the QT value is above 450 ms. Assessing the dynamics of changes in shap-value allows us to explain the relationship between various predictor values and study endpoint, which was the basis for utilizing this method in multilevel categorization procedures.

At the fourth stage of the study, utilizing various multilevel categorization methods, 4 groups of PoAF risk factors were formed. The first pool of risk factors was obtained from the shap-value analysis results (Figure 2). The second pool expanded the first due to threshold values obtained at the third stage of the study by several dichotomization methods. The third group of risk factors was represented by the predictors medians in the comparison groups and their centroids, and the fourth group used threshold values corresponding to predictors quartiles. To encode multilevel categorical predictors values, we used the weight coefficients (WC) of the MLR models developed for each risk factors group (Table 3). We call the approach that ensures the formation of a second pool of risk factors and their WC - multimetric categorization.

Table 3. Predictors weight coefficients and thresholds obtained by multilevel categorization methods

Predictors	SHAP		Multimetric categorization		Group medians and centroids		Quartiles	
	Thresholds	WC	Thresholds	WC	Thresholds	WC	Thresholds	WC
Age, years	61+	0.630	[60; 64] 64+	0.621 0.689	[63; 66] 66+	0.353 0.36	[58; 64] [64; 69] 69+	0.748 0.33 0.851
ESD, cm	[3.1; 4.1] 5+	1.028 1.226	[3.1; 4.1] 5+	1.0 1.15	[3.3; 3.35] 3.35+	0.828 0.167	[3.1; 3.3] [3.3; 3.8] 3.8+	1.931 1.175 1.421
RAD, cm	[4.2; 5.3]	0.457	[4.2; 5.3]	0.533	[4.3; 4.5] 4.5+	0.558 0.649	[3.8; 4.3] [4.3; 4.8] 4.8+	0.906 1.377 0.877
QRS, ms	80-	0.918	80-	0.942	80-	0.98	[80; 100]	1.302

MULTILEVEL AF PREDICTORS CATEGORIZATION

Predictors	SHAP		Multimetric categorization		Group medians and centroids		Quartiles	
	Thresholds	WC	Thresholds	WC	Thresholds	WC	Thresholds	WC
QT, ms	390+	1.033	390+	1.027	[380; 400] 400+	0.672 1.028	[360; 395] [395; 420] 420+	0.598 0.269 1.05
RR, ms	[700; 750] [880; 1000] 1100	1.306 1.211 2.327	[700; 750] [880; 1000] 1100	1.286 1.231 2.406	[900; 950] 950+	1.256 0.629	[800; 920] [920; 1080] 1080+	0.324 0.398 0.429
PQ, ms	[170; 210]	0.991	[170; 210]	1	160+	0.523	[140; 160] [160; 180] 180+	0.658 1.712 0.864
P, ms	130+	1.547	[100; 130] 130+	2.32 3.35	100+	5.886	100+	4.55
TR	1	0.683	1	0.703	1	0.785	1	0.721

Abbreviations: WC - weight coefficient; LV- left ventricular; ESD - LV end systolic dimension, RAD - right atrium transverse size, TR - Tricuspid regurgitation.

3.4 Models based on multilevel categorical predictors

At the fifth stage of the study, based on multilevel predictors obtained by various methods, 4 PoAF prognostic models were developed by XGB (Table 4). The best predictive properties were demonstrated by the model with predictors identified by the multilevel categorization method (AUC 0.802). The latter had comparable accuracy with the models including continuous variables or risk factors obtained by the SHAP method (AUC 0.802 vs. 0.795). A comparative accuracy assessment between prognostic models with predictors identified by dichotomization (Appendix C) and by multimetric multilevel categorization methods demonstrated the advantages of the latter, which was confirmed by statistically significant AUC metric differences (p-value <0.001). Besides, it allowed us to explain PoAF prognosis based on assessment results of predictors threshold values and WC (Table 3). Taking these data into account, it was concluded that in patients with coronary artery disease after CABG, the greatest likelihood of PoAF developing is associated with a P wave duration of ≥ 130 ms (WC - 3.35) and in the range [100-130 ms] with WC - 2.32, RR ≥ 1100 ms (WC - 2.41), as well as with RR in the range of 700-1100 ms, QT above 390 ms, PQ from 170 to 210 ms and QRS ≤ 80 ms. PoAF

MULTILEVEL AF PREDICTORS CATEGORIZATION

correlation was established for ESD in the range from 3.1 to 4.1 cm and above 5 cm, RAD - from 4.2 to 5.3 cm, age over 60 years and TR. The assessment of individual PoAF predictors' influence on its development was performed utilizing the SHAP and XGB methods (Figure 3). The strongest influence is demonstrated by the QT indicator (shap-value 0.94), TR presence, the duration of the RR intervals and RAD. A low PoAF development probability is associated with the younger age (patients under 60 years), ESD below 3 cm and RAD below to 4.1 cm, PQ interval less than 150 ms and QRS above 100 ms.

Table 4. Accuracy assessment of PoAF prognostic models based on predictors with multilevel categorization

Metrics	Multilevel SHAP	Multimetric categorization	Group medians and centroids	Quartiles
AUC	0.795[0.772;0.819]	0.802[0.779;0.824]	0.7[0.67;0.771]	0.66[0.63;0.691]
Sen	0.735[0.691;0.78]	0.741[0.698;0.784]	0.65[0.607;0.693]	0.6[0.549;0.651]
Spec	0.71[0.688;0.732]	0.713[0.693;0.733]	0.652[0.63;0.675]	0.618[0.576;0.66]
PPV	0.383[0.356;0.41]	0.386[0.366;0.407]	0.313[0.296;0.33]	0.21[0.191;0.229]
NPV	0.917[0.903;0.931]	0.919[0.907;0.932]	0.885[0.873;0.898]	0.902[0.89;0.914]
F1-score	0.503[0.471;0.535]	0.507[0.482;0.532]	0.422[0.4;0.444]	0.31[0.285;0.335]

4. Conclusion

In recent years, prognostic models utilizing ML methods are being developed, wide usage of which in clinical practice is limited by the complexity of prognostic results interpretation. Promising tools for this problem solving are explainable artificial intelligence (XAI) algorithms, the elements of which includes the predictors threshold values determination and their ranking according to their influence intensity on the endpoint. Predictors threshold values determination is carried out using their categorization, which allows to detail the relationship between indicators of the clinical and functional patients status with the resulting variable. According to the literature, the most accessible method of multilevel categorization is descriptive statistics with the medians, quartiles or quantile calculation [16].

MULTILEVEL AF PREDICTORS CATEGORIZATION

However, most of the categorization criticisms are associated precisely with this approach, which is primarily due to the dependence of such threshold values on a specific sample, lack of relationship with the clinical context, ignoring possible non-linear relationships, etc. [16]. An alternative method that takes into account the clinical context is searching for optimal threshold values based on minimization or maximization of objective functions, such as Min(p-value) or Max(AUC).

Recent literature about PoAF prediction problem analysis showed that utilizing categorization methods, PoAF risk factors were identified, which included the age of patients over 60 years [7, 17], 66 years [5, 18] or 70 years [19], increased LA size [5, 20], including with LAD > 4.5 cm [18] or > 3.9 cm [11] and reduced LVEF $< 30\%$ [7], increased P wave duration according to standard (> 116 ms) [21, 22]. A number of anamnestic data are also validated as risk factors for PoAF: male gender [5, 23], the presence of arterial hypertension, chronic heart failure, chronic obstructive pulmonary disease, chronic kidney disease, diabetes mellitus [5], rheumatic heart disease [18, 23], mitral valve disease [3], previous cardiac surgery, metabolic syndrome and obesity [5, 6]. In our study, anamnestic features did not demonstrate predictive potential. The TR and RAD indicators were firstly verified as PoAF predictors. Our study confirmed the predictive value of age and ECG in relation to PoAF, but did not reveal a relationship between laboratory data and LVEF with the PoAF development.

Utilizing the patients with coronary artery disease after the CABG database example, we analyzed the effectiveness of various predictors threshold values searching methods, deviations from which increased their predictive potential and allowed to attribute them as PoAF risk factors. It was identified that the SHAP method, which considered as one of the promising XAI technologies, is a useful categorization tool due to the effective determination of cut-off thresholds, in particular for multilevel categorization and predictors relationship analysis both in continuous and categorical forms with the study endpoint. At the same time, multilevel categorical predictors obtained by combining SHAP data with other dichotomization methods results have been shown to provide higher predictive accuracy. Potential risks of information loss during new categorization methods usage were overcome by detailing knowledge about the interconnection of individual risk factors with the study endpoint. This was confirmed by predictive models quality criteria comparison for predictors both in continuous and multilevel categorical forms. Thus, for the best model with continuous predictors, AUC was 0.795, while

MULTILEVEL AF PREDICTORS CATEGORIZATION

utilizing multimetric categorization, it was 0.802. By providing threshold-based categorical predictors ranked by their weights, the proposed method could facilitate bedside risk stratification and decision-making in CABG patients, bridging the gap between high-performance ML models and clinical usability.

Dataset limitations

Study limitations, which may limit generalizability include the retrospective design and single-center data source. The dataset's temporal span (2008–2023) may also introduce heterogeneity in perioperative management practices. The full precise dataset can be found at https://github.com/NikitaKuksin/DataSet_MultilevelPredictorsCategorizationPostCABG_AtrialFibrillation

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (the project FZNS-2023-0010 of the State Assignment of the Far Eastern Federal University (FEFU))

Supplemental Material**Appendix A.**

Clinical and functional characteristics of patients with coronary artery disease

Predictor	Group PoAF (n=280)		Group without PoAF (n=1025)		OR [95% CI]	p-value
	Me (Q1; Q3)/abs	Mean ± SD/%	Me (Q1; Q3)	Mean ± SD		
Age, years	66 (61; 71)	65.7 ± 6.9	63 (58; 69)	62.9 ± 7.78	-	<0.000001
Female, abs. (%)	76	27.14%	237 (23.12%)		1.24 [0.917; 1.673]	0.188
Height, cm	170 (165; 176)	170.1 ± 8.2	170 (165; 175)	170 ± 8	-	0.802
Weight, kg	80 (73; 90)	82.5 ± 14	80 (73; 90)	82.1 ± 13	-	0.86
BMI, kg/m^2	27.97 (25.3; 31.2)	28.56± 4.85	28.1 (25.1; 31.2)	28.51±4.69	-	0.736
LVEF, %	60 (54; 63.5)	57.6 ±8.5	60 (51; 64)	57.4 ±9.5	-	0.9
RLVMI, c. u.	1.01 (0.86; 1.18)	1.05 ±0.307	0.98 (0.84; 1.16)	1.02 ±0.264	-	0.263
RTI, c. u.	0.408 (0.363; 0.455)	0.415 ±0.083	0.417 (0.37; 0.458)	0.42 ±0.088	-	0.442
LV ESD, cm	3.3 (3.2; 3.7)	3.49 ±0.58	3.35 (3; 3.8)	3.45 ±0.59	-	0.185
LV EDD, cm	5.1 (4.8; 5.425)	5.15 ± 0.58	5.1 (4.7; 5.4)	5.1 ± 0.56	-	0.284
Systolic pressure gradient Ao/LV, mm Hg	7 (5; 9)	8.67 ± 7.34	6 (5; 8)	7.95 ± 7.88	-	0.048
MPAP, mm Hg	25 (21; 30)	27.8 ± 8.97	25 (22; 28)	26.9 ± 7.77	-	0.225
LAL, cm	3.9 (3.6; 4.2)	3.93±0.56	3.9 (3.6; 4.3)	3.98 ± 0.6	-	0.339
LAD, cm	4.6 (4; 5.1)	4.57±0.74	4.3 (3.8; 4.9)	4.38±0.73	-	0.0002
Indexed LA volume, ml/m ²	33.3 (24.5; 43.1)	33.69±17.9	30.2 (23.7; 39.3)	32.21±16.4	-	0.125
RAL, cm	3.8 (3.5; 4.1)	3.8±0.5	3.7 (3.4; 4)	3.71±0.52	-	0.0023
RAD, cm	4.5 (4.1; 4.9)	4.5±0.64	4.3 (3.8; 4.8)	4.28±0.66	-	0.0000033
P, ms	100 (100; 100)	102.44±8.5	100 (100; 100)	101.99±8	-	0.69
PQ, ms	160 (140; 180)	161.3±32.7	150 (140; 180)	156.8±36.7	-	0.025
QRS, ms	80 (80; 100)	88.97± 14.97	80 (80; 100)	94.4± 19.29	-	0.00036
RR, ms	950 (895; 1090)	961.8±166	900 (800; 1080)	943.7±166.5	-	0.129

MULTILEVEL AF PREDICTORS CATEGORIZATION

Predictor	Group PoAF (n=280)		Group without PoAF (n=1025)		OR [95% CI]	p-value
QT, ms	400 (380; 430)	396.8±34.7	380 (360; 420)	387.9±38.5	-	0.00143
Creatinine, $\mu\text{mol/l}$	92.83 (79.1; 110)	95.3±25.7	97 (83; 110)	98.7±24.2	-	0.036
GFR, ml/min	77.9 (62.6; 95.8)	83.5±54.2	77.2 (63.6; 95.8)	80.9±26.1	-	0.841
CHF III-IV FC, abs. (%)	43 (15.35%)		124 (12.1%)		1.3 [0.91; 1.93]	0.156
History of MI, abs. (%)	32 (18.5%)		143 (20%)		0.91 [0.6; 1.4]	0.75
Stable angina pectoris III-IV FC	65 (34.6%)		247 (37.6%)		1.14 [0.81; 1.61]	0.478
Extracardiac arteriopathy	96 (34.3%)		342 (33.3%)		1.04 [0.79; 1.38]	0.776
AH, abs. (%)	165 (95.38%)		657 (91.76%)		1.7 [0.81; 3.7]	0.188
Aortic stenosis, abs. (%)	6 (2.1%)		20 (1.95%)		1.24 [0.49; 3.15]	0.62
TR, abs. (%)	51 (18.21%)		112(10.93%)		1.8 [1.26; 2.6]	0.00154
MR, abs. (%)	88 (31.4%)		295 (28.78%)		1.13 [0.85; 1.51]	0.415
AR, abs. (%)	20 (7.15%)		66 (6.4%)		1.12 [0.66; 1.88]	0.683
CKD, abs. (%)	74 (26.43%)		262 (25.56%)		1.04 [0.77; 1.41]	0.758
COPD, abs. (%)	23 (13.29%)		82 (11.45%)		1.2 [0.72; 1.95]	0.59
DM, abs. (%)	45 (26.01%)		171 (23.88%)		1.1 [0.77; 1.64]	0.63
Previous stroke, abs. (%)	12 (6.94%)		46 (6.42%)		1.1 [0.56; 2.1]	0.94
Hemoglobin, g/l	142 (131; 152)	141±16.6	143(131; 153)	141±16.9	-	0.77
Red blood cells, $10^{12}/\text{l}$	4.69 (4.31; 5.03)	4.65±0.58	4.69 (4.30; 5.06)	4.65±0.58	-	0.98
Leukocytes, $10^9/\text{l}$	6.8 (5.7; 8)	7± 2	6.9 (5.8; 8.37)	7.2±2.2	-	0.175
Lymphocytes, $10^9/\text{l}$	1.87 (1.44; 2.42)	1.9±0.73	2 (1.53; 2.53)	2.1±0.92	-	0.09

MULTILEVEL AF PREDICTORS CATEGORIZATION

Predictor	Group PoAF (n=280)		Group without PoAF (n=1025)		OR [95% CI]	p-value
Platelets,10 ⁹ /l	228 (182; 266)	225±57	232 (192; 273)	237±65	-	0.0325
Total cholesterol,mmo 1/l	4.35 (3.66; 5.4)	4.6±1.36	4.45 (3.7; 5.43)	4.7±1.41	-	0.132
Glucose, mmol/l	5.63 (5.11; 6.22)	6±1.7	5.67 (5.13; 6.52)	6.2±1.8	-	0.134
Total protein, g/l	70.9 (66.3; 73.7)	69.6±7.3	71.4 (67.9; 75.2)	71.1±7.8	-	0.00396
Total bilirubin, μmol/l	16.9 (12.1; 23.825)	19.3±10	16.3 (11.7; 22.96)	18.8±10.2	-	0.358
Triglycerides, mmol/l	1.48 (1.15; 1.88)	1.68±1.1	1.63 (1.2; 2.2)	1.82±0.94	-	0.0022
Urea, mmol/l	6 (5; 7.13)	6.37±1.94	6 (4.97; 7.35)	6.47±2.29	-	0.98
Thrombin time, s	19.6 (16.6; 21.5)	20±6.14	19.9 (17.1; 21.4)	20.1±7.2	-	0.67
PTI, %	93.6 (86; 99.7)	92±14.58	94 (86.75; 102)	94.26±25.3	-	0.172
INR	1.05 (1; 1.13)	1.12±0.55	1.03 (0.98; 1.1)	1.06±0.124	-	0.082
SBP, mm Hg	130 (130;150)	137±21	130 (125; 140)	135±20	-	0.0193
DBP, mm Hg	80 (75; 80)	80±8	80 (70; 80)	79±8.5	-	0.00775
Heart rate, beats/min	68 (62; 75)	70±12	68 (62; 72)	69±10	-	0.178

Abbreviations: CI - confidence interval, BMI - body mass index, LV - left ventricle, LVEF - LV ejection fraction, RLVMI - relative left ventricular myocardial mass index, RTI - relative thickness index of left ventricle posterior wall, LV ESD - end systolic dimension, LV EDD - end diastolic dimension, MPAP - mean pulmonary artery pressure, LAL - left atrium medial-lateral size, LAD - left atrium anterior-posterior size, RAL - right atrium longitudinal size, RAD - right atrium transverse size, GFR - glomerular filtration rate, CHF - Congestive Heart Failure, FC- functional class, AH - arterial hypertension, TR - Tricuspid regurgitation, MR - mitral regurgitation, AR - aortic regurgitation , CKD - Chronic kidney disease, COPD- chronic obstructive pulmonary disease, DM - diabetes mellitus, PTI - prothrombin time index, INR- international normalized ratio, SBP - systolic blood pressure, DBP - diastolic blood pressure.

MULTILEVEL AF PREDICTORS CATEGORIZATION

Appendix B.

Weighting coefficients in a multivariate logistic regression model without predictors standardization

Predictors	Weight coefficients
Age	0.036538
RAD	0.476447
TR	0.643446
QRS	-33.214139
QT	12.580338
RR	0.551974
PQ	1.767283
P	14.158973
ESD	0.140284
Intercept	-10.54463818

Abbreviations: RAD - right atrium transverse size, TR - Tricuspid regurgitation

References

1. Gaudino M, Di Franco A, Rong LQ, Piccini J, Mack M. Postoperative atrial fibrillation: from mechanisms to treatment. *Eur Heart J.* 2023;44:1020-1039.
2. Xu Z, Qian L, Zhang L, Gao Y, Huang S. Predictive value of NT-proBNP, procalcitonin and CVP in patients with new-onset postoperative atrial fibrillation after cardiac surgery. *Am J Transl Res.* 2022;14(5):3481-3487.
3. Shen J, Lall S, Zheng V, Buckley P, Damiano RJ, Schuessler RB. The persistent problem of new-onset postoperative atrial fibrillation: a single-institution experience over two decades. *J Thorac Cardiovasc Surg.* 2011;141:559-570.
4. Filardo G, Damiano RJ, Ailawadi G, Thourani VH, Pollock BD, Sass DM, Phan TK, Nguyen H, da Graca B. Epidemiology of new-onset atrial fibrillation following coronary artery bypass graft surgery. *Heart.* 2018;104:985-992.
5. Greenberg JW, Lancaster TS, Schuessler RB, Melby SJ. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. *Eur J Cardiothorac Surg.* 2017;52(4):665-672. DOI: 10.1093/ejcts/ezx039.
6. Lu Y, Chen Q, Zhang H, Huang M, Yao Y, Ming Y, Yan M, Yu Y, Yu L. Machine learning models of postoperative atrial fibrillation prediction after cardiac surgery. *J Cardiothorac Vasc Anesth.* 2023;37:360-366.
7. Mariscalco G, Biancari F, Zanobini M, Cottini M, Piffaretti G, Saccocci M, Banach M, Beghi C, Angelin GD. Bedside tool for predicting the risk of postoperative atrial fibrillation after cardiac surgery: the PoAF score. *J Am Heart Assoc.* 2014;3(2).
8. Karri R, Kawai A, Thong YJ, Ramson DM, Perry LA, Segal R, Smith JA, Penny-Dimri JC. Machine learning outperforms existing clinical scoring tools in the prediction of postoperative atrial fibrillation during intensive care unit admission after cardiac surgery. *Heart Lung Circ.* 2021;30:1929-1937.
9. Parise O, Parise G, Vaidyanathan A, Occhipinti M, Gharaviri A, Tetta C, Bidar E, Maesen B, Maessen JG, La Meir M, Gelsomino S. Machine learning to identify patients at risk of developing new-onset atrial fibrillation after coronary artery bypass. *J Cardiovasc Dev Dis.* 2023;10:82.

MULTILEVEL AF PREDICTORS CATEGORIZATION

10. El-Sherbini AH, Shah A, Cheng R, Elsebaie A, Harby AA, Redfearn D, El-Diasty M. Machine learning for predicting postoperative atrial fibrillation after cardiac surgery: a scoping review of current literature. *Am J Cardiol.* 2021;209:66-75. doi:10.1016/j.amjcard.2023.09.079.
11. Zhang H, Qiao H, Yang B, Lu Y, Bai T, Xue J, Liu Y. Development and validation of a diagnostic model based on left atrial diameter to predict postoperative atrial fibrillation after off-pump coronary artery bypass grafting. *J Thorac Dis.* 2023;15(7):3708-3725.
12. Shakhgeldyan KI, Kuksin NS, Domzhalova IG, Rublev VY, Geltser BI. Interpretable machine learning for in-hospital mortality risk prediction in patients with ST-elevation myocardial infarction after percutaneous coronary interventions. *Comput Biol Med.* 2024;170:107953.
13. Valente F, Henriques J, Paredes S, et al. A new approach for interpretability and reliability in clinical risk prediction: acute coronary syndrome scenario. *Artif Intell Med.* 2021;117:102113.
14. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: *Advances in Neural Information Processing Systems. Proceedings of the 31st Annual Conference on Neural Information Processing Systems*; 2017 Dec 04-09; Long Beach, USA.
15. Evenson KR, Wen F, Herring AH. Associations of accelerometry-assessed and self-reported physical activity and sedentary behavior with all-cause and cardiovascular mortality among US adults [published correction appears in *Am J Epidemiol.* 2017 Jul 1;186(1):129]. *Am J Epidemiol.* 2016;184(9):621-632.
16. Mabikwa OV, Greenwood DC, Baxter PD, Fleming SJ. Assessing the reporting of categorised quantitative variables in observational epidemiological studies. *BMC Health Serv Res.* 2017;17:2137.
17. Lin SZ, Crawford TC, Suarez-Pierre A, Magruder JT, Carter MV, Cameron DE, et al. A Novel Risk Score to Predict New Onset Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. *Heart Surg Forum.* 2018;21(6).
18. Mathew JP, Parks R, Savino JS, Friedman AS, Koch C, Mangano DT, et al. Atrial fibrillation following coronary artery bypass graft surgery: predictors, outcomes, and resource utilization. MultiCenter Study of Perioperative Ischemia Research Group. *JAMA.* 1996;276:300-6.

MULTILEVEL AF PREDICTORS CATEGORIZATION

19. Mathew JP, Fontes ML, Tudor IC, Ramsay J, Duke P, Mazer CD, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. *JAMA*. 2004;291:1720-9.
20. Manning WJ, Gelfand EV. Left atrial size and postoperative atrial fibrillation: The volume of evidence suggests it is time to break an old habit. *J Am Coll Cardiol*. 2006;48:787-9.
21. Zaman AG, Archbold RA, Helft G, Paul EA, Curzen NP, Mills PG. Atrial fibrillation after coronary artery bypass surgery: A model for preoperative risk stratification. *Circulation*. 2000;101:1403-8.
22. Steinberg JS, Zelenkofske S, Wong SC, Gelernt M, Sciacca R, Menchavez E. Value of the P-wave signal-averaged ECG for predicting atrial fibrillation after cardiac surgery. *Circulation*. 1993;88:2618-22.
23. Creswell LL, Schuessler RB, Rosenbloom M, Cox JL. Hazards of postoperative atrial arrhythmias. *Ann Thorac Surg*. 1993;56:539-49.