
Load-balancing Algorithm Supporting Real Time Mode in
Distributed System

V. Kryukov, C. Shakhgeldyan, V.Mayorov
Vladivostok State University

41, Gogolya, Vladivostok, Russia 690600

E-mail: kryukov@vvsu.ru

Abstract

Heterogeneous workstations connected by local area
networks are an attractive solution to design data
acquisition and processing systems intended for analysis of
the data of physical experiments. One of the most important
problems arising during of the designing such systems is
support of real time mode. In our work we will consider
possibility of the use of several computers connected by
local networks for support of the soft real time mode to
acquire, process and accumulation of the data without
information loss. Load balancing algorithm was developed
for maintenance of system operation in real time mode. We
discuss in the paper the following problems: detecting
when the data needs to be repartitioned to provide real-time;
technique of the choice of the most suitable workstation for
load distribution; the mechanism to perform the
repartitioning, and the results of the algorithm operation.

1 Introduction

Heterogeneous workstations connected by local area
networks are an attractive solution to design data
acquisition and processing systems intended for analysis of
the data of physical experiments. The computational power
of workstations, and bandwidth of networks are increasing
rapidly [1]. As a result, the use of distributed model allows
designing high-performance data acquisition and
processing systems where data are processed by
complicated long-duration procedures.

One of the most important problems arising during the
designing such systems is support of real time mode. In our
work we will consider the possibility of the use of several
computers connected by local networks for support of the
soft real time mode to acquire, process and accumulation of
the data without information loss.

Load-balancing algorithms should be applied to use several
networked computers with benefits. The most of load
balancing algorithms are aimed to decrease calculating
time [2-10]. In accordance with these algorithms workloads
are redistributed if there are idle workstations. In our case
we should not redistribute workloads if some nodes are idle.
The main goal of the presented approach is to schedule
workloads to provide real-time mode, i.e. to process

without data loss.

In the second part of the paper we present the architecture
of the Distributed Data Acquisition and Processing System
(DDAPS) for which the load-balancing algorithm was
implemented. The third part of the paper is devoted to the
load-balancing algorithm. We discuss when the data needs
to be repartitioned to provide real-time; the technique of the
choice of the most suitable workstation; the mechanism to
perform the repartitioning. The results of the algorithm
operation are discussed in the fourth part of the paper.

2 Architecture of the system

DDAPS is intended for acquisition, processing,
visualization, and management of physical experimental
data. DDAPS is used in local area networks Fast Ethernet
with network computers under Windows/Solaris. MS SQL
Server DBMS is used to store DDAPS’s data (Fig.1).
DDAPS was developed on the basis of CORBA technology,
which provides object-oriented model of designing of the
distributed systems. DDAPS represents a set of the
CORBA-objects operating in the heterogeneous
environment (Fig.2).

CORBA-objects of DDAPS belong to the following types:
the control objects, processing objects, generating objects,
objects of accumulation, and objects of visualization.

Three control objects are implemented in the current
version of the system. The first object TaskManager (Fig.2)
provides the system’s control and implements the
load-balancing algorithm. The second object provides
interaction with DDAPS’s database. The gathering
statistics objects accumulate the information about CPU’s
usage and belong to control objects of DDAPS also.

The class library providing coding new user’s objects of
different types and theirs embedding into the DDAPS
without change of the system is developed. DDAPS’s user
has to create an experiment and to start it to operate in
DDAPS. An experiment includes the data sources (objects
of data acquisition, simulation of a signal, or read of signal
from database), various processing methods, accumulation
and visualization.

Figure 1: Architecture of DDAPS

Data of DDAPS are transferred through CORBA Service –
Event Service (Fig.2). The service allows to transmit data
according to “one-to-many” rule generating an event. All
CORBA-objects wishing to receive data have to subscribe
to the event in the Event Channel (Fig.2). As soon as data
come into the Event Channel, Even Service notifies all
subscribed objects about the event.

Task Manager

Signal
Acquisition

Processing

DataBase
Storage Data

Visualization

Statiscics

EventA

EventB

EventA

EventC

EventA EventC
Event Channel

Event Channel

E
ve

nt
 C

ha
nn

el

Processing

EventB

EventC

EventA

Figure 2: Logical model of DDAPS

The objects may receive data from Event Channel. But
Event Service uses TCP/IP protocol to transmit the data. It
results in dependence between number of the nodes and
time of data transmission. It opposes to provide real-time
mode. We will use UDP to transmit the data between the
DDAPS’s objects.

3 Load-balancing algorithm

The load-balancing algorithm allows to answer the
following questions.

1. When the data needs to be repartitioned.

2. What computer should be selected for repartition
of a part of workload on it.

3. What scheme to perform the repartitioning to
provide real-time mode for data acquisition,
processing, and accumulation.

3.1. Criterion of repartition

The main goal of load balancing algorithm in our task is to
provide data acquisition, processing, and accumulation
without information loss. The data have to be redistributed
when a threat of data loss is arisen. Let's describe the
scheme of data acquisition and processing in DDAPS.

Buffers organized in a queue called “ready queue” are used
for filling by the digitized data on the data acquisition node
(fig.3). After the digitized data have been written in the
buffer they are transferred to the Event Channel. After data
transmission to the Event Channel, the buffer is located in
the “ready queue” again. If the data are dispatched to the
Event Channel too slowly the “ready queue” of buffers will
be empty and there will be data loss. The processing objects
located on various network nodes accept the data from the
Event Channel and write them in the raw data buffers
organized in queues liked “raw data queue”. Then the
buffer is extracted from the raw data queues to be processed,
and after processing it is dispatched in the Event Channel
for the further accumulation or visualization.

ADO/
OCI

Solaris

Win32
Client

CORBA
Managers

DataBase
Storage

Data Acquisition

Processing

Analysis

RT Event Channel

CORBA

CORBA
CORBA

CORBA

RT Event Channel

RT Event Channel

CORBA

Windows NT

RT Event
Channel DBMS

Figure.3: Criterion of repartition

The criterion of repartition is the length of raw data queue
located on the processing node. If the length of a raw data
queue exceeds length of the “ready queue” then it is
necessity to redistribute workload, as the node is not able to
process data in time.

3.2. Choice of the node

DDAPS works in the heterogeneous environment where
the nodes have various performances and fulfill different
tasks. It is necessary to fix the parameters determining “the
most suitable” node to redistribute workload on it.

Processor’s performance should be one of the parameters
having an influence on a choice of the most suitable node.
Higher performance node has to be used more often.
Length of a raw data queue is the second parameter. If the
length of raw data queue is great, the node cannot be
considered to add workload to it independently of
processors’ performance.

The important parameter is the percent of CPU’s usage.
Heavily loaded workstation is not able to perform
additional work. The percent of CPU’s usage is sent to
TaskManager node from each node in a constant interval.

Thus it is required to fix such node that the choice of the
node will result in the fastest decrease of length of raw data
queue.

In the current version of DDAPS the most suitable node is
selected from a relation

G(l,p,u)=100(1-l)+50(1-u)+50p, (1)

where l-relative length of a raw data queue, u - percent of
CPU’s usage, p – throughput of the node for a specific

target. All parameters vary from 0 up to 1. The most
suitable node has a maximum of G(l,p,u). We are going to
make more exact the formula in future.

3.3. Decimation algorithm

We enumerate some preconditions, which we will use for
our algorithm.

1. Data are acquired and processed by blocks. (It is
true for science field where DDAPS is used:
acoustic and hydrophysics experiments)

2. UDP may be used for data transmission. (The item
allows not to take into account time of
transmission because time is independent on the
number of nodes)

3. Processing algorithm is considered as indivisible
(Algorithm may include many parts but all of parts
operate on one node).

Initially the only workstation processes the data received
from the data acquisition node. When the length of the raw
data queue on the processing node becomes more than
“ready queue” then the processing object send the message
to the control object to request about repartition of
workload.

If load balancing is required the most suitable node is
selected accordingly the formula (1) and the objects, which
are the same as ones on the processing node, are invoked.
Then two processing nodes participate in the experiment,
each of them processes each second block. The nodes have
twice as much time for processing of a block.

If one of the processing nodes is not able to fulfill workload
then the supplementary node is enlisted. Half of workload
from the heavily loaded node is removed to the

Ready queue 1 2 3 100

In-process queue

1 2 3

Queue of digitized data

Push to
queue

Send to Event Channel

1 2 3 …

Raw data queue

Data acquisition
Data processing

Send to Event Channel

100

Request to redistribute

Processed block

Event “Buffer is done”

TaskMa
nager
object

supplementary node. Repartition is carried out on 2 always.
Each second data block is moved to the supplementary
node. Data space is reduced by half and allowed time for
processing is increased in 2 times on the heavily loaded
node.

In the general case the load-balancing scheme can be
described as following.

Let n is decimation coefficient used to pick out the blocks
and to process them on a node. For example, if n=4 the
node processes each fourth block. Let k is number of the
block modulo n, i.e. the node processes each n-th block
with number M where k is residue of division M on n (M%n
=k). Data repartition is fulfilled on two nodes always. k for
the first node remains the same as earlier, and k for the
second node is increased on n then n is increased in 2 times
on the both nodes.

Decimation algorithm may be applied not only to
independent block. Sometimes the results of processing of
previous block are needed for processing of next block.
Example of the task is data filtering by sectioned
convolution. In the case processing CORBA-object
receives not only data from data acquisition but results of
processing of previous block too.

4. Testing results

The load-balancing algorithm is implemented in DDAPS
and tested on networked workstations with the Windows
2000 operating system. The computers are networked Fast
Ethernet 100 Mb.

The computers described in the table 1 had taken part into
the experiments.

Table 1. Description of the computers
Sampling
frequence # Description Purpose
10 loops 25

loops
A PII 300

MHz
Data
acquisition

B PIII 450
MHz

Management
objects, Name
Service,
EventService,
Processing

43 KHz 23
KHz

C PIII 700
MHz

Processing 72 KHz 41
KHz

D PII 400
MHz

Processing 50 KHz 23
KHz

E PIII 650
MHz

Processing 36
KHz

F PIII 650
MHz

Processing 36
KHz

The data acuisition node (A) samples signal with a
sampling frequency. Then the digital sinal is send to Event

Channel. If the data processing computers are not able to
receive the data then data is lost. The maximum sampling
frequencies when the data are not lost, are shown in the
table 1.

The data processing is Fast Fourier Transform (FFT)
several times, in a loop. We had used both direct and
inverse FFT. The number of loops allows to vary the
processing duration.

The node B has additional responsibilities to manage
DDAPS (including the load balancing algorithm).
Therefore the maximim sampling frequency is a few
smaller than the frequency on the other nodes.

The task of the first experiment is to provide real-time
processing for maximum possible sampling frequency (100
KHz). The results are shown on Fig.4.

100 KHz
1

1/2
50 KHz

1/2
50 KHz

1/4
1/4

25 KHz
1/2+1/4
75 KHz

1/4

1/4+1/4
50 KHz

1/4+1/4
50 KHz

1/4+1/4
+1/8
62,5
KHz

1/4+1/8
37,5
KHz

1/8

Load Balancing is achieved

1 step

2 step

3 step

1/2

C B

4 step

Figure 4: Experiment with 2 processing nodes
 (10 loops of FFT).

At the beginning of the experiment the node B performed
all operation. But when it was not able to process more than
43 KHz (10 loops) then half of workload (each second
block) was moved on the node C. Then both the node B and
the node C tried to process 50 KHz. When the node B is not
able to perform the workload then half of it was moved to
the node C. Then the node B worked with 25 KHz and the
node C worked with 75 KHz. But the node C may process
no more than 72 KHz. Half of the most part of workload (25
KHz) was moved from the node C to the node B. Then each
node has to process 50 KHz (25+25). The part of workload
(12,5 KHz) was moved from the node B to the node C again.
As a result the node C processed 62,5 KHz and the node B
processed 37,5 KHz. Load balancing was achieved for 4
steps.

We may suppose a priori the nodes, which provide the
processing with sampling frequencies 72 and 43 KHz, are
able to process jointly with sampling frequency 100 KHz.
But if the overhead charges on the use of the additional
node are too great then the nodes are not able to process
with the required frequency.

As Fig.3. shows workload after the first step is similar to

workload after the third step. It seems that the second and
third steps are unnecessary. But it is not true. Always the
most part of workload is divided.

Five processing nodes had taken part in the next experiment
under 25 loops of FFT(Fig.5).

1/2
50 KHz

1/4
25 KHz

1/4
25 KHz

1/4
25 KHz

1/4
25 KHz

1/8
12,5
KHz

1/4
12,5
KHz

1/8

Load Balancing is achieved

1 step

2 step

3 step

1/2

CB

4 step

1
100 KHz

1/2
50 KHz

D

1/4

1/4
25 KHz

1/4
25 KHz

1/16

1/4
25 KHz

E (36 KHz)

1/2
50 KHz

1/4+1/8
37,5
KHz

1/4

1/4
25 KHz

F

1/8+1/8
25 KHz

1/4
25 KHz

1/8
12,5
KHz

1/8
12,5
KHz

1/8+1/8
25 KHz

1/4
25 KHz

1/8+
1/16
18,75
KHz

1/4+
1/32
28,25
KHz

1/32
3,125
KHz

1/8

1/32

5 step

6 step

7 step

B (23 KHz)

C (41 KHz)

D (23 KHz)

F (36 KHz)

Figure 5: Experiment with 5 processing nodes (25 loops of FFT).

In the experiment (Fig.5) load balancing is achieved at the
moment when workload is distributed uniformly in
accordance with performance of the nodes. The same
results were taken in each experiment with any number of
the nodes.

When load balancing is achieved then workloads on the
nodes are linearly dependent on performance of the nodes.
There are no dead-ends in the algorithm. Therefore either
the balance is achieved or the message about impossibility

to achieve real-time is generated. One or more nodes may
be added to DDASP. It can result in possibility to achieve
real-time mode.

The results of experiments have confirmed efficiency of
load balancing algorithm to provide real-time mode at least
for 10 nodes. The greater number of nodes results in hard
load of the node with EventService. Data should be
transferred by other methods discussed in [11]. Load
balancing algorithm is not changed at the same time.

As experiments show total performance of nodes has to be
in 1,3-1,5 times more than required performance to provide
real-time. It may be explained by the one of the nodes
(TaskManager node) has additional workload (CORBA
services: Name Service, Event Service, and objects of
management of DDAPS including load-balancing
algorithm and Task Manager). Other reasons are that during
a predefined interval, all nodes send their load information
(the usage of CPU) to the TaskManager node. And
overhead on data transmission is considerable.

5. Conclusions

Load balancing algorithm to provide real time mode is used
in DDAPS developed for Pacific Ocean Institute of Russian
Academy of Science [11-12]. DDAPS allows to acquire,
process, display, and accumulate data of different sources.
DDAPS is used for processing of acoustic, temperature,
seismic, and other data. Algorithm of load balancing is
especially important for processing of acoustic data to
avoid data loss. It is explained by high sampling
frequencies.

References

[1] Ka-Yeung Kwok, Fu-Man Lam, Mounir Hamdi, Yi
Pan , and Chi-Chung Hui. Application-Specofoc Load
Balancing in Heterogeneous Systems. //High
Performance Cluster Somuting. Vol.2., pp. 350-374.
1999

[2] V. Velusamy, I.Banicescu. “Efficient Data
Management for Load Balancing Scientific
Applications in Distributed Computing Environment
with Factoring Methods”.. Proceedings of Parallel and
Distributed Techniques and Applications. Las Vegas,
USA. 2000.

[3] Y. F. Hu and R. J. Blake. Load Balancing for
Unstructured Mesh Applications. 2000.
http://www.dl.ac.uk/TCSC/Staff/Hu_Y_F/PROJECT/
pdcp_siam/

[4] Peiyi Tang and Pen-Chung Yew. Processor
Self-Scheduling for Multiple-Nested Parallel Loops. In
Kai. Hwang, Steven M. Jacobs, and Earl E.
Swartzlander, editors, Proceedings of the 1986
International Conference on Parallel Processing,
pages 528–535, University Park, Pennsylvania, August,
1986. IEEE Computer Society Press.

[5] Constantine D. Polychronopoulos. Toward
Auto-scheduling Compilers. The Journal of
Supercomput-ing, 2(3):297–330, 1988.

[6] Constantine D. Polychronopoulos and David J. Kuck.
Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Trans. on
Computers, C-36(12):1425–1439, December, 1987.

[7] Marc Willebeek-LeMair and Anthony P. Reeves.

Dynamic Load Balancing Strategies for Highly Parallel
Multicomputer Systems. Technical Report
EE-CEG-89-14, Cornell Univ. Computer Engineering
Group, December, 1989.

[8] Susan Flynn Hummel, Edith Schonberg, and Lawrence
E. Flynn. Factoring: A Practical and Ro-bust Method
for Scheduling Parallel Loops. In Supercomputing ’91
Proceedings, pages 610–619, Albuquerque, NM,
November 18–22, 1991. IEEE Computer Society
Press.

[9] S. Flynn Hummel, E. Schonberg, and L. E. Flynn.
Factoring: A Method for Scheduling Parallel Loops.
Communi- cations of the ACM, 35(8):90{101, Aug.
1992.

[10] Bruce S. Siegell. Automatic Generation of Parallel
Programs with Dynamic Load Balancing for a Network
of Workstations. May 5, 1995, CMU-CS-95-168.

[11] Kryukov V.V, Shakheldyan C.J. Real-time in Ethernet
network. Telematika 2001, Peterburg, 2001.

[12] Kryukov V.V, Shakheldyan C.J. Implementation of the
Distributed System for Data Acquisition, Processing
and Analysis. . Proceedings PDPTA'2000 Las-Vegas .
USA, Vol. 3, pp.1721-1727.

