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Abstract. The aim of the study was to develop new prognostic models of post-
operative atrial fibrillation (PoAF) in patients with ischemic heart disease (IHD)
after coronary artery bypass grafting (CABG) based on preoperative predictorsAQ1

and to assess the effectiveness of their multilevel categorization to improve theAQ2

quality of the prognosis and its clinical interpretation.
A single-center retrospective cohort study was conducted, analyzing the data

of 1305 medical histories of patients with IHD who underwent elective isolated
CABG. Two groups were identified, the first group included 280 (21.5%) patientsAQ3

with PoAF, and the second group included 1025 (78.5%) patients without rhythm
disturbances. Prognostic models of PoAF were developed using multifactorial
logistic regression (MLR), random forest (RF), and stochastic gradient boosting
(SGB) methods. The predictors were dichotomized using optimal cutoff points grid
search methods, centroid calculation, and Shapley additive explanations (SHAP).
For multilevel categorization, it was proposed to combine the threshold values
identified during dichotomization and rank them based on cutoff thresholds using
MLR weight coefficients (multi-metric categorization method).

As a result of the multi-stage selection, 9 PoAF predictors were identified,
validated and categorized. Prognostic models were developed with continuous,
dichotomous, and multilevel categorical variables. The best SGB model with con-
tinuous predictors had an AUC of 0.795. Models with predictors identified by the
multi-metric categorization method showed better performance than the models
with continuous variables (AUC—0.802).

Keywords: prognostic models · multilevel categorization · dichotomization ·
postoperative atrial fibrillation · stochastic gradient boosting · Shapley additive
explanation (SHAP)

1 Introduction

Postoperative atrial fibrillation (PoAF) in patients with ischemic heart disease (IHD) is
one of the most common complications of coronary artery bypass grafting (CABG) and
occurs in 20–40% of patients [5, 15]. Despite numerous preventive strategies developed,
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the incidence of PoAF remains relatively constant [13, 18], but some authors noting
a tendency for increased occurrence in the near future [3]. The negative consequences
of PoAF are primarily associated with a 4-time increased risk of developing ischemic
stroke and a 2-time increase in mortality at 30-day and 6-month observation periods [6].
The lack of a universal pathophysiological concept describing a single mechanism of
PoAF development is the reason for creating forecasting tools to personalize the risk
factors of this complication [7–9, 12].

Among the studies related to predicting PoAF, the POAF score scale developed
using multifactorial logistic regression (MLR) and odds ratio calculation stands out.
The insufficient performance of this scale prompted the expansion of predictor spectrum
and the use of new machine learning (ML) methods, leading to an improvement in
the quality metrics of PoAF prognostic models (AUC 0.7–0.75) [7, 19]. Predictors in
these models were presented in both continuous and dichotomous forms, allowing the
analyzed indicators to be classified as PoAF risk factors (e.g., age over 60 years). It is
also worth noting that in previously published works, examples of clinical justification
for the selection of threshold values allowing the personalization of PoAF risks and
increasing the interpretability of model-generated conclusions were not presented when
dichotomizing the data. In some studies, a multilevel categorization [19] was only used
for the age indicator, with cutoff points arbitrarily set, for example, every 10 years after
60.

The aim of the study was to develop new prognostic models of PoAF in patients with
IHD after isolated CABG based on preoperative predictors and evaluate the effectiveness
of their multilevel categorization in enhancing the quality of prognosis and its clinical
interpretation.

2 Methods

2.1 Study Population

The results of a single-center retrospective cohort study, which analyzed the medical
history data of patients with ischemic heart disease (IHD) who underwent elective iso-
lated coronary artery bypass grafting (CABG) at the cardio-surgical department of the
State Budgetary Healthcare Institution “Primorsky Regional Clinical Hospital №1” in
Vladivostok from 2008 to 2023, are presented. The dataset for analysis was formed
from electronic medical records extracted from the hospital’s medical information sys-
tem. Patients with any form of atrial fibrillation (AF) in their medical history, as well
as those who underwent CABG along with any other surgery, were excluded from the
study. Thus, the dataset consisted of medical histories of 1305 patients (992 males and
313 females) aged 35 to 83 years. The study protocol complied with local institutional
requirements and received full approval; patient consent was not required.

The primary endpoint was newly detected postoperative atrial fibrillation (PoAF). AF
episodes lasting more than 30 s, verified by continuous electrocardiogram monitoring for
at least 96 h after coronary artery bypass grafting (CABG), were considered as evidence
of PoAF development. The cohort studied was divided into two groups. The first group
included 280 (21.5%) patients who experienced AF episodes during the postoperative
period in the hospital, and the second group included 1025 (78.5%) patients without
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Predicting Atrial Fibrillation in Patients with Ischemic Heart Disease 3

arrhythmias. In the first group, hospital mortality was 7.8% (22 patients), while in the
second group it was 3.7% (38 patients).

The preoperative clinical and functional status of the patients was assessed on the
first day of hospital treatment using 130 factors, the main ones of which are presented
in Table 1. Echocardiographic measurements were performed on a GE “Vivid-7” device
according to the standard protocol [4]. The diameters of the left (LAD) and right atria
(RAD), longitudinal dimensions of the left (LAL) and right atria (RAL), left ventricular
internal diastolic (LVIDd) and systolic (LVIDs) dimension, as well as ECG results:
durations of the RR, PQ, and QT intervals, P wave, and QRS complex, were analyzed.

2.2 Statistical Methods

The distribution of continuous variables according to the Kolmogorov-Smirnov test
differed from normal, therefore non-parametric methods of mathematical statistics were
used for them. The results were presented as median (Me) and interquartile ranges (Q1;
Q3), and the Mann-Whitney test was used for intergroup comparisons of continuous
variables, while the χ2 test was used for categorical variables. Odds ratios (OR) and
their 95% confidence intervals (CI) were calculated for binary variables using Fisher’s
exact test. Differences were considered statistically significant at p < 0.05.

2.3 Supervised Machine Learning

Prognostic models for PoAF were developed using multiple linear regression (MLR),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost) decision tree mod-
els. The quality of these models was evaluated based on four metrics: area under the
ROC curve (AUC), sensitivity (Sen), specificity (Spec), and F1-score. To select opti-
mal hyperparameters, the Grid Search Cross-Validation (GridSearchCV) optimization
method from the sklearn Python library was used.

The dataset was divided into two samples: one for training and cross-validation
(80%) and the other for final testing (20%). The training and cross-validation proce-
dure was performed using stratified k-Folders cross-validation on 10 folds. The average
AUC quality metric was used for model selection, predictor selection and validation,
and tuning of hyperparameters by exhaustive search over a grid of parameter values
(GridSearchCV). For the final testing, the best MLR, RF, and GB models with optimal
parameters and hyperparameters were trained on 80% of the dataset and evaluated on
the final testing sample (20%).

To provide a reliable estimation of the quality metrics, the procedure was repeated
500 times with subsequent averaging of the metrics, initially splitting the data randomly
using bootstrapping method.

2.4 Categorization of the Variables

In this research, a method of multilevel categorization was used, as previously reported
by the authors [14].

To dichotomize potential predictors, we used optimization methods on the grid with
a step of Δ= (max-min)/100: minimization of p-value - Min(p-value), maximization of
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AUC—Max(AUC), quartile method, centroid method, and Shapley additive explanations
(SHAP) [10]. The Shapley method allows identifying thresholds at which the predictor
influence function on the endpoint demonstrated singularity, which may occur multiple
times in the range of continuous feature values [14]. In order to perform multi-level
categorization, we combined all threshold values identified through dichotomization
using various methods, including the SHAP method. Close threshold values were merged
through averaging. The centroid method assumed the use of the median of the analyzed
features in comparison groups (with the PoAF feature and without the PoAF feature)
and equally distant values (centroids), from which four categories were identified for
each indicator [17]. The quartile method involves identifying four categories for each
variable based on the evaluation of their medians, 2nd, and 3rd quartiles [12].

To assess the degree of influence of indicators on the endpoint, the Shapley method
was applied.

2.5 Study Design

The research design consisted of 5 stages. In the first stage, after extracting data from
the medical information system, a dataset was formed, which underwent procedures
of verification, preprocessing, validation, and correction. Using intergroup comparison
tests, a pool of potential predictors of PoAF was formed.

In the second stage of the study, prognostic models of PoAF with predictors in
continuous form were developed using machine learning methods. The prognostic sig-
nificance of the predictor was confirmed if its inclusion in the model led to an increase
in the AUC value. All variables were considered in model development, regardless of
statistical differences in comparison groups, and hyperparameter tuning was performed
at this stage. Model development and cross-validation were carried out on 80% of the
dataset (derivation cohort), and finally tested on 20% (validation cohort). The predictors
and hyperparameters obtained at this stage were used for further steps.

In the third stage, binary categorization of continuous variables was carried out
using different methods of threshold value determination, using the derivation cohort,
and prognostic models of PoAF were developed based on this, validated on the validation
cohort.

In the fourth stage of the study, multilevel categorization of variables was performed
using four approaches. In the first approach, only thresholds identified by the SHAP
method were considered, in the second approach—the set of threshold values obtained
by other dichotomization methods was expanded. Additionally, thresholds obtained by
the centroid method considering the medians of groups with and without PoFP, as well
as using quartiles Q1, Q2, and Q3, were considered.

To assess the degree of risk factor influence on the endpoint, multiple linear regression
models were developed, and their weight coefficients were used to encode multi-level
categorical predictors. Risk factors with negative or close to 0 weight coefficient values
in the multivariate linear regression model were excluded from consideration.

In the fifth stage of the study, four new prognostic models of PoAF were devel-
oped based on gradient boosting, with predictors obtained through different methods
of multilevel categorization. Statistical significant differences in quality metrics were
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Predicting Atrial Fibrillation in Patients with Ischemic Heart Disease 5

evaluated using bootstrapping method (n = 500), 95% CI, and comparison results using
the Mann-Whitney test.

3 Results

3.1 Subject Characteristics

Analysis of clinical, demographic, and laboratory parameters between groups demon-
strated that patients with PoAF were characterized by older age and an increased
prevalence of tricuspid valve regurgitation (TR) among them (Table 1).

Table 1. Clinical and functional parametres of patients with IHD

Predictor PoAF (n = 280) Non-PoAF (n =
1025)

OR (95%) CI p-value

Age, (y) 66 (61; 71) 63 (58; 69) – < 0.000001

BMI, (kg/m2) 27.97 (25.3; 31.2) 28.1 (25.1; 31.2) – 0.736

LVIDs, (cm) 3.3 (3.2; 3.7) 3.35 (3; 3.8) – 0.185

LVIDd, (cm) 5.1 (4.8; 5.425) 5.1 (4.7; 5.4) – 0.284

LAL, (cm) 3.9 (3.6; 4.2) 3.9 (3.6; 4.3) – 0.339

LAD, (cm) 4.6 (4; 5.1) 4.3 (3.8; 4.9) – 0.0002

RAL, (cm) 3.8 (3.5; 4.1) 3.7 (3.4; 4) – 0.0023

RAD, (cm) 4.5 (4.1; 4.9) 4.3 (3.8; 4.8) – 0.0000033

P, (ms) 100 (100; 100) 100 (100; 100) – 0.69

PQ, (ms) 160 (140; 180) 150 (140; 180) – 0.025

QRS, (ms) 80 (80; 100) 80 (80; 100) – 0.00036

RR, (ms) 950 (895; 1090) 900 (800; 1080) – 0.129

QT, (ms) 400 (380; 430) 380 (360; 420) – 0.00143

TR, n (%) 51 (18.21%) 112(10.93%) 1.8 [1.26; 2.6] 0.00154

Individuals in this group had higher values of LVIDs, LAD, RAD, and RAL, systolic
pressure gradient LV/Ao, increased QT interval duration, and PQ.

3.2 Machine Learning Models

In the second stage of the research, prognostic models of PoAF were developed, vali-
dated, and tested using logistic regression, decision tree, and machine learning methods
(Table 2).

For all models, the best results in terms of the AUC metric were obtained when ECG
parameters (QRS, QT, PQ, RR intervals, and P wave), age, RAD, LVIDs, as well as
hypertension were used as predictors.
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6 K. I. Shakhgeldyan et al.

Table 2. Performance assesment of prognostic models of PoAF using predictors in continuous
form

Metrics MLR SGB RF

AUC 0.698 [0.695; 0.702] 0.795 [0.791; 0.798] 0.779 [0.775; 0.782]

Sen 0.643 [0.636; 0.65] 0.718 [0.711; 0.725] 0.7[0.694; 0.707]

Spec 0.65 [0.647; 0.654] 0.72 [0.716; 0.723] 0.7 [0.697; 0.704]

F-score 0.416 [0.412; 0.42] 0.507 [0.503; 0.511] 0.485 [0.481; 0.488]

Comparing the predictive value of the developed models showed that SGB and RF
methods provide higher prediction performance than MLR (AUC—0.698 vs 0.795 and
0.779).

3.3 Categorization

In the third stage of the research, the predictors of PoAF were dichotomized in continuous
form using methods to search for an optimal cutoff threshold on a grid (Min(p-value)
and Max(AUC)), by SHAP method, and by calculating the centroid (Table 3). The use
of threshold values, deviation from which is associated with an increased probability of
PoAF, allows considering binary data as risk factors for adverse events. The risk factor
is encoded as “1” if the predictor value exceeds the threshold with a suffix “+”, or does
not reach it with a suffix “−”, and “0” in all other cases.

Table 3. Dichotomization of continuous predictors of in-hospital mortality using various methods

Characteristics Мinimal
p-value

Мaximal
AUC

Centroid SHAP

Age, (y) 60.0+ 60.0+ 64.0+ 61+

LVIDs, (cm) 3.0+ 3.0+ 3.35+ [3.1; 4.1]
5+

RAD, (cm) 4.12+ 4.12+ 4.4+ [4.2; 5.3]

QRS, (ms) 89- 89- 80- 80-

QT, (ms) 420+ 382+ 390+ 390+

PQ, (ms) 163+ 163.0+ 155.0+ [170;210]

RR, (ms) 882.0+ 882.0+ 925.0+ [700; 750]
[880; 1000]
1100

P, (ms) 120+ 100++ 100+ 130+

The research results showed that the threshold values obtained through various bina-
rization methods sometimes differed from each other. The first three dichotomization
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Predicting Atrial Fibrillation in Patients with Ischemic Heart Disease 7

methods considered isolated indicators and did not take into account prognostic mod-
els. The SHAP method was applied to the multifactorial model of stochastic gradient
boosting, and the threshold value was determined as the point where the SHAP value
exceeded 0.2 units.

Prognostic models of PoAF with dichotomous predictors were developed based on
MLR. It was found that the model obtained using the centroid method (AUC—0.689)
significantly lagged behind models developed using Max(AUC) methods and SHAP,
which have acceptable predictive ability (AUC: 0.736—0.791).

At the fourth stage of the research, four groups of PoAF risk factors were formed
using various methods of multilevel categorization (Table 4).

Table 4. Weighting coefficients and thresholds of predictors obtained by multilevel categorization
methods

Characteristics SHAP Multi-metric
categorization

Group medians
and centroid

Quartiles

Threshold WC Threshold WC Threshold WC Threshold WC

Age, (y) 61+ 0.63 60+ 0.69 [63; 66]
66+

0.35
0.36

[58; 64]
[64; 69]
69+

0.75
0.33
0.85

LVIDs, (cm) [3.1; 4.1]
5+

1.03
1.23

[3.1; 4.1]
5+

1.0
1.15

[3.3; 3.35]
3.35+

0.83
0.17

[3.1; 3.3]
[3.3; 3.8]
3.8+

1.93
1.18
1.42

RAD, (cm) [4.2; 5.3] 0.46 [4.2; 5.3] 0.53 [4.3; 4.5]
4.5+

0.56
0.65

[3.8.4.3]
[4.3; 4.8]
4.8+

0.91
1.38
0.88

QRS, (ms) 80– 0.92 80– 0.94 80– 0.98 [80; 100] 1.3

QT, (ms) 390+ 1.03 390+ 1.03 [380; 400]
400+

0.67
1.03

[360; 395]
[395; 420]
420+

0.6
0.27
1.05

RR, мс [700; 750]
[880;
1000]
1100

1.31
1.21
2.33

[700; 750]
[880;
1000]
1100

1.29
1.23
2.47

[900; 950]
950+

1.26
0.63

[800; 920]
[920;
1080]
1080+

0.32
0.4
0.43

PQ, мс [170; 210] 0.99 [170; 210] 1 160+ 0.52 [140; 160]
[160; 180]
180+

0.66
1.71
0.86

P, мс 130+ 1.55 [100; 130]
130+

2.32
3.35

100+ 5.89 100+ 4.55

TR 1 0.68 1 0.7 1 0.79 1 0.72

The first pool of risk factors was obtained based on the analysis of SHAP values.
The second pool expanded the first pool by adding threshold values obtained in the third
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8 K. I. Shakhgeldyan et al.

stage of the study using several binarization methods. The third group of risk factors was
represented by medians of predictors in comparison groups and their centroids, while
the fourth group used threshold values corresponding to predictor quartiles.

To encode the values of multilevel categorical predictors, weighting coefficients
(WC) from MLR models developed for each risk factor group were used. The app-
roach that ensures the formation of the second pool of risk factors and their weighting
coefficients is called multi-metric categorization.

3.4 Models Based on Multilevel Categorical Predictors

In the fifth stage, four prognostic models of PoAF were developed based on multilevel
predictors obtained through various methods, using SGB (Table 5).

Table 5. Performance assessment of prognostic models of PoAF based on predictors with
multilevel categorization

Metrics Multilevel SHAP Multi-metric
categorization

Group medians and
centroid

Quartiles

AUC 0.795 [0.77; 0.82] 0.802 [0.78;
0.82]

0.7 [0.67; 0.77] 0.66 [0.63; 0.69]

Sen 0.735 [0.67; 0.78] 0.741 [0.7;
0.78]

0.65 [0.61; 0.69] 0.6 [0.55; 0.65]

Spec 0.71 [0.688; 0.73] 0.713 [0.69;
0.73]

0.652 [0.63; 0.68] 0.618 [0.58; 0.66]

F-score 0.503 [0.47; 0.54] 0.507 [0.48;
0.53]

0.422 [0.4; 0.44] 0.31 [0.29; 0.34]

The model with predictors identified through multi-metric categorization demon-
strated the best prognostic properties. It showed slightly better performance than the
model that included continuous variables (AUC 0.8 vs. 0.791). The comparative perfor-
mance assessment of prognostic models with predictors identified through dichotomiza-
tion methods and multi-metric multilevel categorization showed the advantages of the
latter, which was supported by statistically significant differences in the AUC metric
(p-value < 0.001).

Using the SHAP and SGB methods, the degree of influence of individual predictors
on PoAF development was evaluated. The QT interval showed the strongest influence
(SHAP value—0.94) when exceeding the threshold of 450 ms, presence of TR, RR
interval duration in the range of 700–1100 ms, and RAD of 4.2–5.3 cm. The low pro-
bability of PoAF development is associated with patients under the age of 60, LVIDs
sizes up to 3 cm, and RAD up to 4.1 cm.
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Predicting Atrial Fibrillation in Patients with Ischemic Heart Disease 9

4 Discussion

Recently, prognostic models based on machine learning methods have been developed,
the application of which in clinical practice is limited by the complexity of interpreting
prognostic results. Promising tools to address this challenge are algorithms of explain-
able artificial intelligence (XAI), elements of which include determining threshold val-
ues of predictors and ranking them by the intensity of their impact on the endpoint. The
determination of threshold values of predictors is performed through their categoriza-
tion, which allows for detailing the relationships between clinical and functional status
indicators of patients with the outcome variable. According to the literature, the most
accessible method of multilevel categorization is descriptive statistics with the calcu-
lation of medians, quartiles, or quantiles [1, 11, 16]. However, a significant portion of
critical remarks regarding categorization are associated precisely with this approach,
primarily due to the dependency of these threshold values on the specific sample, lack
of correlation with the clinical context, ignoring possible non-linear relationships, and
others [11]. An alternative method that takes into account the clinical context is the
search for optimal threshold values based on the minimization or maximization of target
functions, for example, Min(p-value) or Max(AUC).

It has been determined that the SHAP method, which is considered as one of the
promising XAI technologies, is a useful tool for categorization due to its efficient deter-
mination of cut-off thresholds, including for multilevel categorization and analysis of
the relationship between predictors in continuous and categorical forms with the study
endpoint. Potential risks of information loss when using new categorization methods
have been overcome by detailing knowledge of the relationship between individual risk
factors and the study endpoint. This was confirmed by comparing the quality criteria of
prognostic models with predictors in continuous and multilevel categorical forms. Thus,
for the best model with continuous predictors, the AUC was 0.795, and when using
multi-metric categorization - 0.802.

It is also worth noting that our models had higher performance compared to those
presented in a previously conducted study, in which only preoperative indicators and
methods MLR, RF, and SGB were used (the best AUC in our study was 0.802 vs 0.74
in [7]). Significant differences are observed between the importance assessment using
SHAP methods and weight coefficients for MLR. In our study, the highest importance for
achieving the final endpoint based on the weight coefficients of MLR was associated with
exceeding the value of P wave duration above 100 ms, while the highest risk according
to the Shapley method was associated with QT > 450 ms. The obtained results indicate
the need for further research to assess the intensity of predictors’ impact on the final
endpoint, which is significant for the clinical interpretation of prognosis results.

5 Conclusion

In this study, based on a database of patients with IHD after isolated CABG machine
learning methods (MLR, SGB, and RF) and 2 approaches to multilevel categorization
of predictors of PoAF (multi-metric categorization and the SHAP method) were tested.
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10 K. I. Shakhgeldyan et al.

Using the developed prognostic models for PoAF, it was shown that the categoriza-AQ4

tion procedures proposed by the authors provide high performance and transparency of
forecasting results.
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