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Технологии, связанные с ультратонкими пленками, имеют важное значение для микроэлектроники. В

этой связи много внимания обращают на механические и оптические свойства пленок. В настоящей ра-

боте исследованы пленки никеля на подложке из стекла. Обнаружен неожиданный эффект прозрачности

пленок для света с пропусканием 1–10% падающего излучения. При этом пленки, во-первых, имеют

толщину достаточно большую по сравнению с толщиной скин-слоя 12–13 нм (поэтому такое пропуска-

ние названо аномальным), во-вторых, сохраняют свои упругие механические характеристики, которые

не отличаются от свойств абсолютно однородных пленок с фиксированной толщиной. Соответственно,

наши пленки действуют стандартно в качестве акустических резонаторов и в качестве излучателей аку-

стических волн в подложку (трансдьюсеров). Аномальное пропускание света объясняется неоднородной

структурой пленки. При этом пропускание света позволяет видеть через пленку бриллюэновские интер-

ференционные осцилляции, связанные с распространением акустических волн в подложке.
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1. ВВЕДЕНИЕ

Микроэлектроника, оптоакустика и нанофотони-
ка — важные направления современной науки и тех-
ники. Во-многом они связаны с фемтосекундными
(фс) лазерами и применением устройств на ультра-
тонких пленках. Типичное устройство (трансдью-

645



Ю. В. Петров, А. В. Дышлюк, С. А. Ромашевский и др. ЖЭТФ, том 167, вып. 5, 2025

сер) в оптоакустике состоит из тонкой пленки ме-
талла на поверхности диэлектрической подложки.
Фс-импульс генерирует акустическую волну в плен-
ке металла. Эта волна осциллирует внутри пленки
и проходит в подложку в виде гиперзвука, т. е. зву-
ка гипервысокой частоты. Эти частоты находятся
в диапазоне 10–100 ГГц и на несколько порядков
превышают верхнюю границу частот ультразвука —
обычно единицы мегагерц [1, 2].

В нанофотонике применяются перфорированные
пленки с заданной структурой заранее созданных
перфораций (решетки, периодически расставленные
щели) [3–6]. Причем размеры перфораций (отвер-
стий) и расстояний между ними существенно мень-
ше длины волны света [3–6]. Дифракционные явле-
ния [7,8] и плазмоника [5,6] определяют количество
и характеристики прошедшего света (экстраорди-
нарное пропускание).

В нашей работе, по-видимому впервые, рассмат-
ривается гибридный случай. С одной стороны на-
ша пленка выступает, как стандартный трансдью-
сер [1, 2], преобразующий лазерный импульс в ги-
перзвук [9,10]. С другой стороны пленка пропускает
свет, благодаря пространственной неоднородности в
виде шаровидных наночастиц и зазоров вокруг них.

Наблюдаемое нами пропускание происходит
вследствие комбинации двух факторов: 1) усиление
электромагнитного (ЭМ) поля на наночастицах
посредством плазмонного дипольного резонанса и
наличия «щелевых» плазмонов в зазорах; 2) тун-
нелирование усиленного ЭМ-поля через никель. В
отличие от механизма с экстраординарным пропус-
канием, в нашем случае, во-первых, нет сквозных
отверстий и, во-вторых, наши наночастицы распо-
лагаются случайно, т. е. не образуют периодической
решетки.

Гиперзвук в подложке представляет собой пери-
одически разнесенную в пространстве систему па-
раллельных плоскостей уплотнений — это гребни ги-
перзвука. Плоскости параллельны плоскости плен-
ки. Система распространяется в сторону удаления
от пленки со скоростью звука. В моменты времени,
когда между пленкой и гребнем укладывается це-
лое число полуволн диагностического лазерного из-
лучения, происходит интерференция. Это позволя-
ет наблюдать бриллюэновские интерференционные
осцилляции.

Такие осцилляции видят при диагностике и с
тыльной стороны пленки, и с фронтальной сторо-
ны, т. е. через металлическую пленку трансдьюсера.
Фронтальной здесь мы называем границу пленка–
воздух или вакуум. При этом тыльная сторона —
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Рис. 1. Временная вариация дифференциального коэффи-

циента отражения ∆R(t)/R0 от фронтальной границы для

диагностического импульса с длиной волны λ = 793 нм.

Время отсчитывается от максимума нагревающего им-

пульса (схема pump-probe), освещающего мишень плен-

ка/подложка с фронтальной стороны. Поглощенный флю-

енс Fabs = 10.9 мДж/см2. Пленка никеля с df ≈ 70

нм, напыленная на стеклянную подложку толщиной 150

мкм. Имеются три характерные стадии: А — неравновесная

стадия с сильновозбужденными электронами зоны про-

водимости продолжительностью порядка 1 пс; В — ста-

дия доминирования акустического эха в пленке никеля;

С — интерференция бриллюэновских рассеяний на звуко-

вой волне, бегущей в стеклянной подложке

это контактная граница (контакт) между пленкой и
подложкой.

Фронтальные (т. е. через пленку) наблюдения
бриллюэновских осцилляции до сих пор выполня-
лись при толщине металлической пленки порядка
толщины скин-слоя [11, 12], когда пленка полупро-
зрачна для света. В нашем случае в примере с плен-
кой никеля толщиной df = 73 нм пропускание одно-
родной пленки в одну сторону ничтожно:

exp(−df/dsk) = e−73/13 = 1/275.

Для диагностического излучения на длине волны
793 нм толщина скин-слоя равна dsk = 12–13 нм.
Чтобы в диагностическом свете видеть осцилля-
ции с фронтальной стороны, пленку надо пройти
два раза. Соответственно коэффициент ослабления
составит очень малую (не наблюдаемую в наших
условиях) величину порядка 10−5. Поразительно, но
осцилляции обнаруживаются (!), см. рис. 1, где име-
ется характерная стадия С.

Методика измерений накачка–зондирование
(pump–probe) представлена в разд. 2.1, 3–5. Экспе-
римент опирается на определение зависимости от
времени терморефлектанса. Находятся дифферен-
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циальный коэффициент отражения (рефлектанс)
как функция времени, ∆R(t)/R0, см. разд. 2.1.
Название терморефлектанс имеет исторические
корни. Считается, что изменения ∆R обусловлены
нагревом лазерным импульсом накачки. На самом
деле имеются изменения вторичного (относительно
нагрева) характера, связанные с прохождени-
ем акустических волн. Для измерения функции
∆R(t)/R0 применяется методика синхронного
детектирования, см. разд. 2.1.

Объектом анализа является пленка никеля, на-
несенная на стеклянную подложку с помощью рас-
пыления магнетроном, см. разд. 5. Импульсы на-
качки и зондирования генерируются фемтосекунд-
ной лазерной системой на кристалле титан-сапфира
(Coherent, Legend). Схема установки и детали систе-
мы описаны в статье [13].

В разд. 2 поясняется физика бриллюэновских ос-
цилляций. В разд. 3 приводятся данные по пропус-
канию света, полученные с помощью источника DH-
2000 (Ocean Optics). В разд. 4 описано, каким обра-
зом в опытах определялась зависимость ∆R(t)/R0.

Разделы 5 и 6 посвящены исследованиям структуры
напыленной пленки никеля. В разд. 7 и 8 описана
теория явлений.

2. БРИЛЛЮЭНОВСКИЕ ОСЦИЛЛЯЦИИ

2.1. Экспериментальные измерения

На рис. 1 показаны результаты нашего измере-
ния терморефлектанса в технике синхронного де-
тектирования [14–16]. Терморефлектансом называ-
ем относительное дифференциальное изменение ко-
эффициента отражения диагностического лазерно-
го импульса, ∆R(t)/R0. Здесь

∆R(t) = R(t)−R0,

R0 — коэффициент отражения мишени до воздей-
ствия нагревающего импульса, R(t) — текущее зна-
чение коэффициента отражения. Время t — это вре-
мя задержки прихода на фронтальную поверхность
диагностического лазерного фс-импульса относи-
тельно прихода на мишень максимума интенсив-
ности нагревающего лазерного фс-импульса. Дан-
ные измерений, показанные на рис. 1, выполнены
с фронтальной стороны. И нагревающий, и диагно-
стический лазерные импульсы действуют на мишень
пленка–подложка с фронтальной стороны. Диагно-
стический импульс падает на плоскость мишени по
нормали к плоскости.
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Рис. 2. Красная кривая: временная вариация коэффици-

ента ∆R(t)/R0 при облучении греющими и диагностиче-

скими импульсами с тыльной стороны. При этом погло-

щенный флюенс Fabs = 10.3 мДж/см2. Образец такой же,

как на рис. 1. Черная кривая перенесена с рис. 1. Она от-

носится к облучению греющими и диагностическими им-

пульсами с фронтальной стороны

В никеле велик коэффициент обмена между
электронной и фононной подсистемами. Соответ-
ственно, двухтемпературная Te ≫ Ti стадия А на
рис. 1 очень короткая. На рисунке не показано мак-
симальное положительное значение 0.012 коэффи-
циента ∆R(t)/R0, вышедшее за рамку рисунка. Зна-
чение 0.012 относится к двухтемпературной стадии
А. Нас будут интересовать последующие стадии В и
С, на которых никель находится в однотемператур-
ном состоянии Te = Ti.

Штриховая горизонтальная прямая на рис. 1 от-
мечает исходный уровень коэффициента ∆R(t)/R0

нашей мишени из пленки и подложки. Для толстого
образца никеля при нормальном падении на длине
волны 793 нм имеем R0 = 0.74.

На рис. 2 красной кривой показаны результаты
измерений, когда и греющий, и диагностический им-
пульсы освещают мишень с тыльной стороны. Срав-
ниваются случаи облучений с фронтальной и тыль-
ной сторон. Бриллюэновские осцилляции проявля-
ются раньше и имеют увеличенную полную ампли-
туду ∆R(t)/R0 от 0.0017 до 0.0015 (от максимума
до минимума) при облучении с тыльной стороны.
Амплитуда этих осцилляций при освещении с фрон-
тальной стороны в среднем составляет 0.0003, т. е. в
5–6 раз меньше.

Периоды акустических осцилляций, связанных с
бриллюэновским рассеянием, равны

TBrillouin = λprobe/2ngl cgl. (1)

Здесь λprobe = 793 нм — длина волны диагностиче-
ского света в вакууме, ngl и cgl — показатель пре-
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ломления и скорость звука в стеклянной подложке
(на рис. 2 это боросиликатное стекло).

Периоды (частоты) световых осцилляций одина-
ковы в вакууме и в стекле. Фазовая скорость света в
стекле меньше. Соответственно уменьшается длина
волны света в стекле λgl = λ/ngl. Сложение отраже-
ний от 1) гребня мгновенного профиля показателя
преломления в стекле и 2) контакта никель–стекло
будет в фазе, когда между двумя этими отражателя-
ми 1 и 2 укладывается целое число полуволн λgl/2.
Говорится о полуволне, поскольку отрезок между
гребнем и контактом свет проходит сначала вперед,
а потом назад. Таким образом, длина пути удваи-
вается. Гребень акустической волны в стекле уда-
ляется от контакта со скоростью звука cgl. Отсюда
следует выражение (1).

Измеренные по черному и красному графи-
кам на рис. 2 периоды бриллюэновских осцилля-
ций одинаковы: при облучении с тыльной стороны
TBrillouin = 47 ± 0.5 пс, при облучении с фронталь-
ной стороны TBrillouin = 48 ± 4 пс. С фронталь-
ной стороны зависимость ∆R(t)/R0 является более
«шумной». Если принять значение показателя пре-
ломления для стеклянной подложки ngl = 1.5 и
считать, что период TBrillouin = 47.5 пс, то, со-
гласно (1), получим, что скорость звука в стек-
ле равна cgl = 5.55 ± 0.05 км/с. При этом объем-
ный модуль стекла Bgl, найденный из соотношения
cgl =

√
Bgl/ρgl, равен 77 ГПа при ρgl = 2.5 г/см3.

2.2. Гидродинамическое моделирование

Акустические поля представлены на рис. 3. Как
сказано, пленка никеля резонирует и в моменты ре-
зонанса отправляет максимумы давлений в подсти-
лающее стекло. С течением времени все новые и но-
вые резонансы выходят в стекло. Из-за излучения
в стекло упругая энергия, запасенная в трансдью-
сере (пленка), убывает. Соответственно, с течени-
ем времени амплитуды последовательных максиму-
мов гиперзвука убывают (пила на рис. 3). Проме-
жутки времени между максимумами коэффициен-
та ∆R(t)/R0, связанные с бриллюэновским отраже-
нием, равны периоду (1). Положения максимумов
во времени для фронтального и тыльного случаев
различаются (ср. положения первого максимума в
этих двух случаях в один и тот же момент времени
на рис. 3).

Это ясно обусловлено тем, что при фронтальном
облучении максимум давления формируется на ста-
дии t ≈ 0 на фронтальной границе. Такому максиму-
му требуется время, чтобы пройти пленку и войти
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Рис. 3. Показаны два мгновенных поля продольных меха-

нических напряжений. Цвета, как и на рис. 2, относятся к

случаям фронтального и тыльного облучений. В этих двух

случаях поглощенные энергии Fabs равны 10.9 мДж/см2 и

10.3 мДж/см2 соответственно. Координата x отсчитыва-

ется от начального положения контакта. В процессе дви-

жения смещение контакта мало и поэтому в выбранном на

рисунке масштабе незаметно. Происхождение бриллюэнов-

ских осцилляций связано с интерференцией между первым

самым сильным гребнем гиперзвука и контактом. Макси-

мумы коэффициента ∆R(t)/R0 при фронтальном облуче-

нии имеют место в моменты времени, в которые длина Lfr

равна целому числу длин cglTBrillouin (1). Аналогично для

случая тыльного облучения

в стекло. При тыльном облучении максимум дав-
ления формируется на стадии t ≈ 0 на контакте и
практически сразу входит в стекло. Соответствен-
но, фронтальная гиперзвуковая волна начинается с
небольшого скачка и затем подрастает до максиму-
ма, см. рис. 3. А тыльный гиперзвук начинается сра-
зу с максимума давления.

При распространении гиперзвука его амплитуда
уменьшается в основном из-за нелинейного эффек-
та, обусловленного ослаблением треугольного скач-
ка давления. В дозвуковом течении, которое имеет
место за скачком, на фронт скачка приходят харак-
теристики со все более и более малыми значениями
давления [17]. В нашей ситуации амплитуда перво-
го максимума примерно равна 1 ГПа. Это значение
мало по сравнению с объемным модулем упругости
стекла (∼ 70 ГПа). Поэтому нелинейное затухание
идет медленно (детальный анализ затухания при-
веден в [18]). На рассматриваемых нами отрезках
времени им можно пренебречь.

Поэтому в случае тыльного облучения амплиту-
да бриллюэновских осцилляций ∆R(t)/R0 меняет-
ся совсем мало — первый скачок имеет постоянную
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Рис. 4. Спектр пропускания нашего образца (пленка нике-

ля толщиной 73 нм на стеклянной подложке) при фрон-

тальном и тыльном нормальном падении света в диапа-

зоне длин волн 370–950 нм. При фронтальном падении на

длине волны 793 нм пропускание T = 6.7%, на длине вол-

ны 396 нм T = 3.7%

амплитуду. На этом скачке неменяющейся амплиту-
ды, с одной стороны, и на контакте, с другой сто-
роны, происходит интерференция диагностического
света. Интерференция происходит в моменты вре-
мени, когда расстояние между движущимся скач-
ком и контактом становится равным целому числу
периодов (1).

Другое дело фронтальный случай. Здесь глав-
ный вклад в отражение диагностических импульсов
связан с фронтальным скин-слоем пленки. Бриллю-
эновские осцилляции слабо модулируют это основ-
ное отражение. Постепенно из-за передачи тепла из
пленки в стекло пленка остывает. В данной версии
гидродинамического кода теплопроводностью стек-
ла пренебрегаем. Вследствие остывания пленки в
эксперименте коэффициент отражения растет. На
рис. 1, 2 это выглядит, как медленное приближение
осциллирующей черной кривой к зеленой штрихо-
вой горизонтали ∆R = 0. При уменьшении фрон-
тальной поглощенной энергии относительное осты-
вание происходит быстрее.

Из рис. 3 следует, что амплитуды акустической
волны по давлению, плотности и изменению пока-
зателя преломления стекла вследствие уплотнения
примерно одинаковы во фронтальном и тыльном
случаях. При этом отношение амплитуд коэффици-
ента ∆R(t)/R0 порядка 1 : 5 в этих двух случаях,
см. рис. 2. Отсюда следует заключение о том, что
пропускание света пленкой на длине волны диагно-
стического импульса 793 нм по порядку величины
равно 1/5. В случае гладкой сплошной пленки без
дефектов пропускание было бы на уровне 10−5 (см.

Рис. 5. Спектр отражения нашего образца при фронталь-

ном нормальном падении света в диапазоне длин волн

370–950 нм. При фронтальном падении на длине волны

793 нм отражение R = 44%, на длине волны 396 нм

R = 26%

Введение), и бриллюэновские осцилляции при фрон-
тальном облучении не наблюдались бы при точности
измерений применяемой нами аппаратуры; в нашем
случае в пленке присутствуют дефекты в виде шаро-
видных наночастиц и зазоров вокруг них, см. ниже.

3. ПРОПУСКАНИЕ СВЕТА

Определено пропускание света образцом из плен-
ки никеля толщиной 73 нм на стеклянной подложке.
Это образец, на котором проводились эксперимен-
ты. Результаты по нему были представлены выше
на рис. 1 и 2.

Были измерены спектры пропускания (рис. 4) и
отражения (рис. 5) для указанного образца при нор-
мальном падении ЭМ-излучения в интересующем
нас диапазоне длин волн 370–950 нм (длина вол-
ны нагревающего и зондирующего импульсов 396 и
793 нм соответственно). В качестве источника излу-
чения в диапазоне длин волн 210–2500 нм исполь-
зовался комбинированный дейтерий-вольфрамовый
галогенный источник DH-2000 (Ocean Optics).

Для регистрации спектра прошедшего и от-
раженного излучения использовался высокочув-
ствительный оптоволоконный спектрофотометр
AvaSpec-2048 (Avantes) с высокой фотометрической
чувствительностью в спектральном диапазоне
200–1100 нм и оптическим разрешением до 0.04 нм.
Для коллимации светового пучка света, выходя-
щего из оптоволокна DH-2000 и фокусировке его
на линзу оптоволокна, ведущего к спектрометру
AvaSpec-2048, использовались два микрообъектива
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Рис. 6. Спектры пропускания, отражения и поглоще-

ния/рассеяния использованного образца с пленкой никеля

73 нм на стекле при нормальном падении ЭМ-излучения

на фронтальную границу пленки металла

ЛОМО с восьмикратным увеличением. Диаметр
светового пучка на образце составлял d = 3 мм.

Для измерения пропускания (отражения) об-
разцов были измерены спектры окружающего фо-
на, а также падающего на образец и пропущенно-
го (отраженного) через образец излучения. Спек-
тры пропускания T и отражения R рассчитывались
по формулам

T = (IT − Ibackg)/(I0 − Ibackg),

R = (IR − Ibackg)/(I0 − Ibackg),
(2)

где Ibackg — спектр излучения окружающего фона,
I0 — спектр падающего излучения на образец, IT —
спектр прошедшего через образец излучения, IR —
спектр отраженного от образца излучения.

При фронтальном падении излучения на фрон-
тальную (свободную) поверхность нашего образца
пропускание составило T = 6.7% на длине волны
793 нм и T = 3.7% на длине волны 396 нм, см. рис. 4.
Отражение при этом составило R = 44% на длине
волны 793 нм и R = 26% на длине волны 396 нм, см.
рис. 5. Сравним данные по отражению от нашего об-
разца со случаем нормального падения на объемную
мишень из никеля. Согласно справочным данным,
имеем R = 90% [19], R = 74% [20], R = 69% [21],
все три значения для λ = 793 нм и R = 51–63% для
396 нм. Видим, что, во-первых, существует значи-
тельный разброс справочных данных и, во-вторых,
наш образец отражает существенно слабее.

На рис. 6 показаны спектры пропускания (T ), от-
ражения (R) и спектр потерь на поглощение и рассе-
яние на неоднородностях (A). Спектр A — это рас-

Рис. 7. Пропускание стеклянной пластины толщиной

150 мкм (подложки) в диапазоне длин волн 370–950 нм.

При нормальном падении на длине волны 793 нм пропус-

кание T = 92%, на длине волны 396 нм T = 90.4%

четная величина: A = 1 − R − T. Данные приве-
дены для нашего образца при нормальном падении
ЭМ-излучения с фронтальной стороны (т. е. со сто-
роны воздуха) в интересующем нас диапазоне длин
волн 370–950 нм. Поглощение и рассеяние A при
нормальном падении излучения составило величи-
ну A = 49.3% на длине волны 793 нм и A = 70.3%
на длине волны 396 нм.

На рис. 7 показан спектр пропускания одной
стеклянной пластинки толщиной 150 мкм (исполь-
зуемой в качестве подложки) без пленки на ней в
диапазоне длин волн 370–950 нм. При нормальном
падении на плоскость пластинки на длине волны
793 нм пропускание T = 92%, на длине волны 396 нм
T = 90.4%.

Рассмотрим отверстие в плоском идеальном [8]
экране с характерным размером d (диаметр «дыр-
ки»). Размер d мал по сравнению с длиной волны λ.

Пусть на экран падает плоская ЭМ-волна с интен-
сивностью Iinc и волновым вектором k = 2π/λ, пер-
пендикулярным плоскости экрана. Тогда мощность
P прошедшего излучения дается формулой

P ∼ (kd)4d2Iinc. (3)

Задача о дифракции на отверстии сводится к за-
даче об излучении дипольного рассеивателя разме-
ром d [8]. Она была решена Рэлеем в 1897 г. [8]. Мно-
житель (kd)4 в формуле (3) называется рэлеевским
фактором.

Допустим, что весь экран покрыт случайно рас-
положенными отверстиями размером d. Пренебре-
гая интерференцией излучения от отверстий, будем
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полагать, что прошедшая мощность складывается
из суммы мощностей излучения диполей. Тогда

IT ∼ (kd)4(sd/s)Iinc, (4)

где sd и s — суммарная площадь отверстий и общая
площадь экрана.

В случае геометрической оптики, когда d ≫ λ,

рэлеевский фактор в формуле (4) заменяется еди-
ницей. При размерах отверстий порядка 100 нм рэ-
леевский фактор не так уж мал: примерно 0.4 для
λ = 793 нм и 6.3 для λ = 396 нм.

Из приведенных оценок следует, что спектр, по-
казанный на рис. 4, нельзя объяснить дифракци-
ей. Спектр на рис. 4 линейно убывает при убыва-
нии длины волны, тогда как при дифракции этот
спектр должен резко расти при убывании λ из-за
рэлеевского фактора — чем меньше длина вол-
ны, тем лучше эта волна преодолевает субволно-
вые препятствия. Таким образом, спектр на рис. 4
необходимо моделировать с учетом существования
плазмон-поляритонов. Вернемся к этому вопросу
ниже в тексте.

4. ИЗМЕРЕНИЯ ОТРАЖЕНИЯ ГРЕЮЩЕГО
И ДИАГНОСТИЧЕСКОГО ИМПУЛЬСОВ В

НАШИХ ОПЫТАХ

В методике накачка–диагностика (pump–probe)
на мишень посылается греющий импульс (накачка),
а затем через промежуток времени t на мишень по-
ступает диагностический (зондирующий) импульс.
Греющий импульс приходит на мишень, находящу-
юся в покое при комнатной температуре, нулевом
давлении и плотностях никеля и стекла, относящих-
ся к нормальным условиям. За время, равное дли-
тельности греющего импульса τL = 150 фс, проис-
ходит отражение греющего импульса от пленки.

Важно то, что этот свет собирается отдельным
измерительным прибором. Поэтому в расчетах ис-
пользуется реальный коэффициент отражения на-
шего образца из пленки и подложки на длине волны
396 нм. Этот коэффициент определяет важнейший
параметр гидродинамических расчетов — поглощен-
ную энергию Fabs.

Затем с периодом Tgl = 2ngldgl/c = 1 пс прихо-
дили бы отражения греющего импульса от тыльной
поверхности стеклянной пластинки; здесь ngl ≈ 1.5,

dgl = 150 мкм — соответственно показатель прелом-
ления и толщина пластинки стекла, c — скорость
света в вакууме; множитель 2 связан с путем вперед
и назад; оценка дана без учета угла наклона нагре-

Рис. 8. Изображения поверхности пленки Ni (толщиной

73 нм), полученные на АСМ в полуконтактном режиме.

На левом рисунке показан скан поверхности размером

10× 10 мкм2, на правом — скан размером 1× 1 мкм2

вающего пучка (т. е. для случая нормального паде-
ния ЭМ-волны). Но в нашем эксперименте греющий
импульс направлен под углом 45◦ к нормали. Поэто-
му эти отражения не попадают в апертуру, собираю-
щую диагностический свет. А для отдельного изме-
рительного прибора с его низкой чувствительностью
эти малые по амплитуде отражения несуществен-
ны, поскольку чувствительность отдельного изме-
рительного прибора на порядки величины меньше
чувствительности прибора, применяемого для син-
хронного детектирования. Отдельный измеритель-
ный прибор применяется для определения коэффи-
циента отражения нагревающего импульса.

Как сказано, нагревающий импульс на длине
волны 396 нм падает на образец под углом 45◦. Зон-
дирующий импульс на длине волны 793 нм падает
по нормали на образец. Во избежание попадания на
регистрирующий фотодиод диффузного отражения
от мощного нагревающего импульса перед фотодио-
дом установлен узкополосный интерференционный
оптический фильтр на центральную длину волны
зондирующего излучения.

Определяющим для нашей работы является ана-
лиз отраженного диагностического импульса. Ди-
агностический импульс освещает мишень по нор-
мали, имеет длину волны 793 нм и длительность
60 фс. Наша мишень является сложной, посколь-
ку пропускает свет за счет неоднородности плен-
ки. Очевидный и определяющий вклад в отражение
связан с пленкой никеля. Добавочный малый вклад
обусловлен светом, приходящим из стекла подлож-
ки. Этот вклад улавливается исключительно бла-
годаря сверхвысокой чувствительности метода син-
хронного детектирования [14], применяемого в на-
шей работе.

Через время Tgl = 1.5 пс в синхронный (lock-
in) усилитель приходит отражение диагностическо-
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Рис. 9. Сечения (поперечные профили) изображений по-

верхности пленки Ni, полученных на АСМ, для сканов раз-

мером 10×10 мкм2 (верхний график) и 1×1 мкм2 (нижний

график)

го импульса от тыльной границы стеклянной под-
ложки толщиной 150 мкм; диагностический импульс
падает на пленку по нормали. Как сказано, основ-
ной вклад в отражение диагностического импульса
связан с отражением в скин-слое пленки. Свет, от-
раженный от оптических неоднородностей стекла,
показанных на рис. 3, поступает в усилитель через
промежуток времени порядка 2nglLfr/c. Если для
примера подставить сюда значение текущей длины
распространения гиперзвука Lfr с рис. 3, то полу-
чим, что это время приблизительно равно 4.5 фс.

Отражение от тыльной границы стекла постоян-
но для каждого из повторяющихся через 1 мс диа-
гностических импульсов. А вот отражение от неод-
нородностей в стекле меняется. Изменения вызваны
движением неоднородностей. Неоднородность мгно-
венного профиля показателя преломления стекла
меняется вместе с распространением гиперзвука в
стекле. Соответствующие изменения ∆R/R0 фикси-
руются в методе синхронного детектирования. Из-
менения ∆R/R0 являются функцией времени за-
держки tdelay между нагревающим и диагностиче-
ским импульсами, см. рис. 1 – 3; Lfr = cgltdelay, где
cgl — скорость звука в стекле.

5. АНАЛИЗ ПОВЕРХНОСТИ ПЛЕНКИ:
АТОМНЫЙ СИЛОВОЙ МИКРОСКОП

Проведен детальный анализ свойств поверхно-
сти пленок никеля разной толщины. В том числе
исследована пленка толщиной 73 нм, использован-

a b

c Inclusions

Gaps

200 nm1 �m

100 nmGaps

Ni film

Pt

Glass

Рис. 10. Изображения поверхности (a, b) и поперечного

сечения (c) пленки Ni, полученные с помощью СЭМ в ре-

жиме детектирования вторичных электронов. а — Изоб-

ражение поверхности пленки Ni, полученное под углом

52◦ к поверхности. b — Увеличенное изображение по-

верхности пленки Ni, полученное по нормали к поверхно-

сти. c — Изображение поперечного сечения пленки Ni, по-

лученное после резки сфокусированным ионным пучком.

Пленка содержит наномасштабные вкрапления (Inclusions),

которые имеют зазоры (Gaps) с пленкой. Эти многочислен-

ные вкрапления видны в виде наноразмерных шариков на

рис. a и b; см. также рис. 8

ная в опытах, показанных на рис. 1 и 2. Анализ с
помощью оптического микроскопа показывает, что
эта поверхность обладает отличными зеркальными
свойствами, причем как с фронтальной стороны, так
и со стороны контакта никель–стекло.

С помощью атомно-силового микроскопа (АСМ)
(Veeco, Multimode V) в полуконтактном режиме
выполнено сканирование фронтальной поверхности
пленки никеля, см. рис. 8. Разрешение АСМ по вер-
тикальной оси z (нормаль к поверхности пленки) со-
ставляет 0.05 нм. На сканах размером 10× 10 мкм2

и 1× 1 мкм2 на поверхности пленки никеля присут-
ствуют отдельно расположенные структуры (высту-
пы) высотой 10–30 нм и диаметром по основанию
90–120 нм. Несколько структур достигают значений
50–60 нм по высоте (рис. 8, 9). Структуры (наноча-
стицы) имеют округлый вид наподобие застывших
капель.

В качестве образца использовалась тонкая по-
ликристаллическая пленка никеля, нанесенная на
подложку из боросиликатного стекла толщиной
150 мкм методом магнетронного распыления в ар-
гоновой среде при давлении 5 · 10−2 Торр. Согласно
измерениям толщины металла (АСМ Multimode V,
Veeco), в месте удаленного до стекла слоя толщина
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Рис. 11. Распределение частиц (N = 108 штук) по размеру

на площади S = 2.5 × 1.7 = 4.25 мкм2. В пленке присут-

ствуют включения (наночастицы) с латеральным разме-

ром около 70×60 нм2 (ширина×высота). Им соответству-

ют максимумы на гистограмме. Шаг бинирования 5.25 нм

пленки составляет df = 73± 2 нм.
Значения среднеарифметической (Ra) и сред-

неквадратичной (Rq) поверхностных шероховато-
стей для скана размером 10 × 10 мкм2 составили
6.1 нм и 9.8 нм соответственно. Для скана разме-
ром 1× 1 мкм2 Ra = 4.6 нм и Rq = 6.4 нм. Для обла-
сти 0.3 × 0.3 мкм2 (на скане размером 1 × 1 мкм2),
в которой отсутствуют выступающие структуры,
значения шероховатости составили Ra = 0.9 нм и
Rq = 1.2 нм. Размер кристаллического зерна в этой
области составляет порядка 20 нм. На рис. 9 пред-
ставлены сечения (поперечные профили) пленки Ni
для сканов размером 10× 10 мкм2 и 1× 1 мкм2.

Таким образом сканирование поверхности с
помощью АСМ не обнаруживает сквозных пор
в пленке.

6. АНАЛИЗ ПЛЕНКИ: ЭЛЕКТРОННЫЙ
МИКРОСКОП

6.1. Наночастицы и зазоры вокруг них

На рис. 10 показаны изображения поверхности
и поперечного сечения пленки Ni, полученные с
помощью сканирующего электронного микроскопа
(СЭМ). Чтобы получить изображения поперечно-
го сечения пленки Ni, с помощью сфокусированно-
го ионного пучка в образце был выполнен разрез.
Предварительно, перед резкой ионным пучком, для
защиты вещества в окрестности плоскости резки от
тепловой деградации было выполнено осаждение за-
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Рис. 12. То же, что и на рис. 11, но для включений с ла-

теральным размером около 72× 64 нм2 (ширина×высота)

и шага бинирования 9.4 нм

щитного слоя Pt с помощью электронного/ионного
пучков. На рис. 10 с этот слой виден как горизон-
тальная серая полоска с надписью Pt. Полоска ни-
келя выделена надписью Ni film. Темная область под
пленкой никеля — это стекло (Glass).

Согласно представленным данным СЭМ, метал-
лическое покрытие Ni имеет сложную структуру.
Оно состоит из пленки Ni и шаровидных нанораз-
мерных включений (частиц), рис. 10 а, b. Очень важ-
но, что, как видно на рис. 10 с, между наночастица-
ми (Inclusions) и основным телом пленки (Ni film)
имеет место пустой зазор шириной порядка несколь-
ких единиц нанометров. На рис. 10 с эти зазоры
отмечены надписями Gaps. Как будет видно ниже,
электродинамика, связанная с шаровидными вклю-
чениями и зазорами, определяет пропускание света
через нашу пленку и отражение от нее, см. рис. 4 и 5.

6.2. Индивидуальные размеры и статистика

наночастиц

В силу важности шаровидных включений для
понимания механизма пропускания света были де-
тально изучены распределения включений по их
диаметрам. Включения расположены хаотично, без
выделенного направления упорядочения. Средний
период расположения частиц (по данным фурье-
анализа) находится около 200 нм. Распределение
частиц по размерам (ширина×высота) приведено на
рис. 11.

Так, на площади S = 2.5× 1.7 = 4.25 мкм2 при-
сутствует N = 108 частиц с латеральным размером
70× 60 нм2, которому соответствуют максимумы на
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Рис. 13. Ширина и высота частицы в зависимости от номе-

ра частицы в выборке из 108 наночастиц. Согласно указан-

ным распределениям, для средних величин ширины и вы-

соты соответственно имеем 70.4±13.2 нм и 68.3±12.5 нм

гистограмме на рис. 11 при использованном шаге
бинирования ∆ = 5.25 нм;

√
S/N ≈ 0.2 мкм. При

шаге бинирования ∆ = 9.4 нм латеральный размер
составляет 72× 64 нм2 (ширина×высота), что соот-
ветствует максимумам гистограммы на рис. 12. Со-
гласно рис. 13, средний размер частиц составляет
(70.4± 13.2)× (68.3± 12.5) нм (ширина×высота).

6.3. Анализ площади, занимаемой

вкраплениями.

На площади СЭМ-фотографии размерами
S = 2.5 × 1.7 = 4.25 мкм2 частицы занимают
8–9% от общей площади. Эта оценка сделана с
учетом, что частицы плоские (2D), т. е. здесь речь
идет о поперечном сечении наночастиц плоскостью
верхней поверхности пленки. В предположении,
что частицы имеют форму полусферы, их реальная
площадь должна вырасти в 2 раза (поскольку
площадь круга πr2, а площадь полусферы 2πr2).

Следовательно, суммарная боковая поверхность вы-
ступающей части наночастиц составляет примерно
16–18% от общей площади пленки.

6.4. Элементный анализ твердого вещества

методом энергодисперсионной рентгеновской

спектроскопии (energy-dispersive X-ray

spectroscopy, EDX).

Элементный анализ был выполнен с помощью
EDX-спектроскопа, входящего в состав комплекса
просвечивающего электронного микроскопа (ПЭМ)

JEM-2100 (HRP). Для этого предварительно с по-
мощью сфокусированного ионного пучка из образца
была вырезана ламель толщиной примерно 100 нм.

На рис. 14 показана ПЭМ-фотография ламели в
светлом поле (BF — bright field). На этом же рисун-
ке приведены фотографии, которые демонстриру-
ют химический состав самой пленки и наночастицы
в ней. Показаны содержания в пленке, включении
(наночастице) и подложке элементов O, Al, Si, Ti и
Ni в соответствии с сигналом характеристического
рентгеновского излучения. Этот сигнал формирует-
ся благодаря переходам на внутреннююK-оболочку.
Данные получены с разрешением 512 × 512 пиксе-
лей при ускоряющем напряжении 200 кВ и зондовом
токе 1 нА.

Главный вывод состоит в том, что, согласно при-
веденным выше данным, пленка и включение (ча-
стица) имеют идентичный элементный состав. На-
личие кислорода предположительно связано с окис-
лением ламели при переносе ее из отсека СЭМ в от-
сек ПЭМ по воздуху.

7. НЕОДНОРОДНОСТИ ПЛЕНКИ И
ПЛАЗМОННЫЙ МЕХАНИЗМ

ПРОПУСКАНИЯ СВЕТА

Для объяснения аномального пропускания све-
та оптически толстыми пленками никеля выполне-
но их численное электродинамическое моделирова-
ние методом конечных разностей во временной об-
ласти (finite difference in time domain, FDTD); опти-
чески толстыми названы пленки, толщина которых
намного больше толщины скин-слоя. Коэффициент
пропускания сплошной однородной пленки из нике-
ля толщиной 73 нм ( 0.2% при λ ≃ 700 нм) пример-
но в 30 раз меньше, чем экспериментально наблю-
даемые значения (см. рис. 4). Последние, очевидно,
обусловлены наличием в экспериментальном образ-
це многочисленных дефектов. Согласно приведен-
ным выше результатам электронной микроскопии и
спектрального EDX-анализа, дефекты представля-
ют собой шарообразные никелевые частицы ради-
усом R ≃ 50 нм, глубоко внедренные в никелевую
пленку так, что между частицей и материалом плен-
ки имеется полый щелевой зазор (см. рис. 10).

Моделирование пленки с такими дефектами про-
водилось в трехмерной геометрии, схематически
представленной на рис. 15 а. Данные о диэлектри-
ческой проницаемости никеля взяты из справочника
[22]. Для упрощения расчетов массив случайно рас-
положенных дефектов аппроксимирован бесконеч-
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Рис. 14. ПЭМ-фотографии ламели в светлом поле (BF), а также содержания в пленке, включении (частице) и подложке

элементов O, Al, Si, Ti и Ni согласно сигналу характеристического рентгеновского излучения (переходы на внутреннюю

K-оболочку). Вывод: как видим, пленка и шаровидная наночастица одинаковы по составу

ным упорядоченным массивом прямоугольной сим-
метрии с кубической элементарной ячейкой, огра-
ниченной в поперечных направлениях периодиче-
скими граничными условиями. Период ∆ выбран
равным 130 нм — такое значение, с одной сторо-
ны, примерно соответствует экспериментально на-
блюдаемой концентрации дефектов на поверхности
пленки и, с другой стороны, является субволновым
и достаточно малым для исключения коллектив-
ных эффектов вследствие упорядоченности модели-
руемого массива шарообразных частиц. В продоль-
ном направлении ячейка ограничена поглощающи-
ми граничными условиями в виде идеально согласо-
ванных слоев (perfectly matched layers, PML).

В результате численного моделирования уста-
новлено, что оптические свойства дефекта обуслов-
лены главным образом дипольным резонансом сфе-
рической никелевой частицы. При этом, если для
уединенного никелевого шара с R = 50 нм в соот-
ветствии с теорией Ми дипольный резонанс (встав-
ка к рис. 15 б ) центрирован на длине волны прибли-
зительно 450 нм, то при углублении шара в плен-
ку резонанс уширяется и смещается в ближний ИК-
диапазон. Это сопровождается перераспределением
ближнего электрического поля шара в область за-
зора, где оно испытывает существенное усиление
(рис. 15 б ).

Усиленное ЭМ-поле в зазорах каждого из дефек-
тов туннелирует на другую сторону пленки (рис.
15 г) и распространяется далее. Причем волны от
отдельных дефектов интерферируют (в направле-
нии распространения падающей волны) конструк-
тивно, давая в сумме единую прошедшую волну су-
щественной амплитуды, что и обусловливает повы-
шенный коэффициент пропускания никелевой плен-
ки с дефектами. Результаты расчета данного коэф-
фициента приведены на рис. 15 в. Как видно, они
хорошо согласуются с экспериментальной зависимо-
стью на рис. 4 и по характеру, и по абсолютным зна-
чениям, что подтверждает правильность сделанных
выводов.

Наличие дефектов влияет и на отраженную от
пленки волну, уменьшая коэффициент отражения
(по сравнению с коэффициентом отражения глад-
кой пленки: около 70% при λ ≈ 700 нм) приблизи-
тельно вдвое (ср. с рис. 5), что также следует из ре-
зультатов проведенного численного моделирования.

8. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ
ТЕРМОРЕФЛЕКТАНСА

Для анализа результатов измерений, показан-
ных на рис. 1 и 2, нами был разработан комплекс
программ. Первым элементом комплекса являет-
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Рис. 15. Результаты численного моделирования: а — моделируемая геометрия, вид сбоку (1 — вакуум, 2 — никель, 3 —

стеклянная подложка, R = 50 нм, gap = 5 нм (ширина зазора), r = 20 нм, h = 54 нм, th = 60 нм, ∆ = 130 нм); б —

распределение амплитуды электрического поля в плоскости вектора E при λ = 1000 нм (на вставке (1) для сравнения по-

казано распределение поля в окрестности уединенного никелевого шара в вакууме на длине волны дипольного резонанса);

в — результат расчета спектральной зависимости коэффициента пропускания пленки с дефектами; г — распределение

амплитуды электрического поля при λ = 1000 нм с измененным масштабом цветовой шкалы для демонстрации тунне-

лирования ЭМ-поля из щелевых зазоров в стеклянную подложку

ся двухтемпературный гидродинамический код (см.
Приложение). С помощью этого кода промоделиро-
вано происходящее в составной (пленка/подложка)
мишени. Пример показан выше на рис. 3.

Второй элемент — это оптическая модель одно-
температурного никеля для длины волны 793 нм;
в однотемпературном состоянии температуры элек-
тронной и ионной подсистем одинаковы. Оптиче-
ская модель основана на приближении Друде – Ло-
ренца. При этом параметры модели извлекаются из
справочных данных, см. Приложение. Третий эле-
мент — программа, основанная на методе трансфер-
матрицы.

На рис. 16 показан расчет, выполненный с помо-
щью данного комплекса программ. Скорость света
велика. Диагностический фс-импульс очень корот-
кий. Поэтому берется серия i = 1, 2, ... мгновенных
гидродинамических профилей

ρ(x, ti), T (x, ti) (5)

для набора фиксированных моментов времени ti.

Считаем, что можно пренебречь изменением гид-
родинамических профилей (5) за время прохожде-
ния диагностического лазерного импульса. Действи-
тельно, время прохождения и отражения света от
скин-слоя равно 2δsk/c = 0.1 фс = 10−4 пс, длитель-
ность диагностического импульса 60 фс = 0.06 пс, а
гидродинамическое время thd ограничено снизу аку-
стическим масштабом ts−sk = δsk/cs = 2 пс; т. е.
thd > ts−sk. За гидродинамическое время происхо-
дит заметное изменение профилей (5).

С помощью профилей (5) и оптической моде-
ли никеля (см. Приложение) вычисляется мгновен-
ный текущий профиль комплексной диэлектриче-
ской постоянной

ǫ(x, ti). (6)

Наконец, с помощью методики трансфер-матрицы
вычисляем коэффициент отражения никеля

∆R(ti)/R0 (7)
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Рис. 16. Сравнение измеренной в опыте временной зави-

симости ∆R(t)/R0 (красная кривая), (взята с рис. 1, 2)

с теорией. Имеются два теоретических расчета. Голубая

теоретическая кривая построена без использования мето-

да трансфер-матрицы, см. текст. Черная кривая с крести-

ками получена с применением комплекса программ из трех

элементов. Комплекс включает расчет отражения по мгно-

венному неоднородному распределению диэлектрической

постоянной (6) с помощью метода трансфер-матрицы. По-

зиции крестиков на черной кривой — это моменты времени

ti, в которые берутся профили (5), (6) и подсчитывается

отклик (7)

по профилю (6) как функцию времени. Это функ-
ция времени, поскольку профиль (6) меняется со
временем. Результат расчета показан черной кривой
с крестиками на рис. 16.

Каждый крестик на черной кривой — это значе-
ние (7) в момент времени ti. В эти моменты берутся
профили (5) и затем (6) для численного моделиро-
вания отражения монохроматического излучения. В
нашем теоретическом расчете не учитывается вклад
отражения от стеклянной подложки, имеющий ме-
сто благодаря наличию сквозных пор в пленке ни-
келя. Поэтому расчетное отражение ∆R/R0 полно-
стью формируется в скин-слое.

Сокращенные обозначения на рис. 16 имеют сле-
дующий смысл. Экспериментальные измерения на-
зываются TTR (transient thermoreflectance). Это из-
мерения ∆R/R0 в технике синхронного детектиро-
вания — красная кривая. Оптическая модель назва-
на OM. При этом DL — это вычисление в модели
Друде – Лоренца. В случае с усреднением плотно-
сти и температуры по скин-слою нет необходимо-
сти применять метод трансфер-матрицы, поскольку
распределение (6) является однородным (не зависит
от x), но меняется во времени. Расчет голубой кри-
вой на рис. 16 ведется по формулам Френеля (по-
этому написано Fr).

Наконец, буквы T-M (черная кривая с крестика-
ми (7)) на рис. 16 относятся к расчету без усредне-
ния по скин-слою. Применяется неоднородный про-
филь (6) и метод трансфер-матрицы (T-M), т. е. в
случае черной кривой учитывается мгновенный про-
филь волны. Временная зависимость профиля от-
слеживает вход и выход (выход после отражения
от фронтальной границы) акустической волны из
скин-слоя.

9. ЗАКЛЮЧЕНИЕ

Выше представлены исследования нашей осо-
бой пленочной структуры. Исследования опирают-
ся на современные средства эксперимента — это
методика pump–probe (нагрев–диагностика), изме-
рения терморефлектанса посредством синхронно-
го детектиривания (применяется lock-in-усилитель),
АСМ (атомный силовой микроскоп), СЭМ (скани-
рующая электронная микроскопия), FIB (focused
ion beam, резка сфокусированным ионным пучком),
TEM (transmission electron microscopy, просвечива-
ющий электронный микроскоп, ПЭМ), спектраль-
ные измерения пропускания и отражения, EDX (эле-
ментный анализ твердого вещества методом энерго-
дисперсионной рентгеновской спектроскопи).

Теоретическая часть статьи структурно делится
на два направления: во-первых, это оптоакустика,
во-вторых, аналитическое и численное моделирова-
ние электродинамических явлений, связанных с фо-
тоникой, плазмоникой и дифракционными эффек-
тами нашей пленки. По первому направлению созда-
на двухтемпературная (2Т) физическая модель ни-
келя (2Т-уравнение состояния, описано взаимодей-
ствие электронной и фононной подсистем, постро-
ена теория коэффициента теплопроводности, охва-
тывающая 2Т- и 1Т-состояния никеля) и выпол-
нено гидродинамическое 2Т-моделирование с уче-
том упругости. Создана оптическая модель никеля
и проведены необходимые численные расчеты опто-
акустического терморефлектанса. В данных расче-
тах применяется метод трансфер-матрицы с очень
большим числом промежуточных слоев.

Полученные результаты позволяют говорить о
создании особой пленочной структуры, которая, на-
деемся, найдет свой круг современных приложений
в фотонных, плазмонных и оптоакустических тех-
нологиях.

С одной стороны, структура представляет собой
новый класс устройств сверхординарного пропуска-
ния света (extraordinary transmission) [3–6]. Новизна
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и отличия тут в том, что 1) вместо сквозного от-
верстия имеются наношарик и несквозной зазор и
2) расположение шариков случайное, а не периоди-
ческая решетка. С другой стороны, пленка являет-
ся эффективным трансдьюсером [1, 2], т. е. устрой-
ством, преобразующим свет в звук.

ПРИЛОЖЕНИЯ

ПОСТАНОВКА ОПЫТОВ

В качестве источника излучения использовалась
фемтосекундная лазерная система на кристалле
титан-сапфира с регенеративным усилением чирпи-
рованных импульсов (Coherent, Legend), генерирую-
щая на выходе оптические импульсы длительностью
60 фс на длине волны 793 нм с частотой повторения
1 кГц. Измерения временной динамики дифферен-
циального коэффициента отражения ∆R(t)/R0, на-
веденного в исследуемом образце нагревающим им-
пульсом, регистрировались с помощью зондирую-
щего импульса. Зондирование осуществлялось в оп-
тической схеме возбуждение–зондирование (pump–
probe) в неколлинеарной геометрии — пучки pump
и probe идут под разными углами относительно
нормали к поверхности, рис. 17. Измерения осно-
ваны на применением высокоточной методики фа-
зочувствительного (синхронного) детектирования.
Здесь ∆R(t) = R(t) − R0, а R и R0 – лазерно-
индуцированный и исходный коэффициенты отра-
жения от исследуемого образца.

Нагревающий импульс после преобразования в
кристалле во вторую гармонику имел длительность
τpump = 150 фс и длину волны λpump = 396 нм. С по-
мощью линзы с фокусным расстоянием f = 200 мм
нагревающий импульс фокусировался под углом па-
дения 45◦ на поверхность образца в эллиптическое
пятно диаметром dx = 130 мкм и dy = 93 мкм
(по уровню 1/e). Изменения коэффициента отра-
жения ∆R(t)/R0 регистрировались в центре обла-
сти нагрева зондирующим импульсом длительно-
стью τprobe = 60 фс на длине волны λprobe = 793 нм
(см. рис. 17, на котором показаны большое и ма-
лое пятна освещения). Зондирующий импульс фо-
кусировался с помощью микрообъектива 4X/0.10 по
нормали к поверхности образца в пятно диаметром
dx = dy = 15 мкм (по уровню 1/e). Простран-
ственное распределение интенсивности нагревающе-
го и зондирующего импульсов в фокальной плоско-
сти соответствует гауссову.

Исследуемый образец располагался на моторизи-
рованном трехкоординатном трансляторе. Времен-

metal film on glass

pump

probe

Front side Back side

Рис. 17. Слева — нагрев и зондирование с фронталь-

ной стороны (интерфейс воздух/металл). Справа — на-

грев и зондирование с тыльной стороны (интерфейс стек-

ло/металл). Длина волны зондирующего импульса смеще-

на в красную сторону, поэтому показана красным цветом

ная задержка между нагревающим и зондирующим
импульсами изменялась в диапазоне от −3 до 300 пс
с помощью моторизованного транслятора, обеспечи-
вающего минимальный шаг по времени около 7 фс
(при перемещении в 1 мкм). Временной шаг варьи-
ровался от 30 фс на ранних временах (от −3 до 3 пс)
до 400 фс на поздних временах (от 3 до 300 пс), что
обусловлено различной скоростью изменения сигна-
ла ∆R(t)/R0 в различные моменты после воздей-
ствия нагревающего импульса.

Малые изменения коэффициента отражения, ко-
торые для исследуемого образца в выбранном диа-
пазоне флюенсов нагревающих импульсов составля-
ли ∆R(t)/R0 ∼ 10−4–10−2, регистрировались с ис-
пользованием методики фазочувствительного (син-
хронного) детектирования. Эта методика позволяет
обнаружить искомый сигнал малой амплитуды на
определенной частоте среди широкополосного шу-
мового фона высокой амплитуды. Оптические сиг-
налы зондирующего импульса, отраженного от об-
разца и падающего на образец, регистрируются с по-
мощью двух одинаковых фотодетекторов в баланс-
ном режиме и направляются на дифференциальный
(разностный) вход синхронного усилителя.

Во избежание попадания на фотодиод (кото-
рый регистрирует отраженный зондирующий сиг-
нал) диффузного отражения от нагревающего им-
пульса на частоте 500 Гц и иного рассеянного излу-
чения перед фотодиодом установлен узкополосный
оптический фильтр. Этот фильтр пропускает излу-
чение на центральной длине волны зондирующего
излучения с шириной полосы пропускания 40 нм (по
уровню FWHM).

Синхронный усилитель измеряет сигнал
∆R(t)/R0 на частоте следования нагревающих
импульсов 500 Гц, которая получается после про-
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реживания последовательности частотой 1 кГц
с помощью механического прерывателя. Частота
следования зондирующих импульсов составляет
1 кГц. При оптимально подобранных параметрах
усилителя (временная константа T = 30 мс, кру-
тизна среза фильтра низких частот 24 Дб/октава)
время накопления (измерения) сигнала ∆R(t)/R0

при каждой временной задержке между нагре-
вающим и зондирующим импульсами составляет
t = 10T = 300 мс, а эквивалентная ширина шумовой
полосы ENBW= 5/64T = 2.6 Гц. Таким образом,
сигнал ∆R(t)/R0 измеряется на частоте 500 Гц в
полосе шириной 2.6 Гц.

При модулировании нагревающих импульсов на
частоте 500 Гц минимальные регистрируемые изме-
нения сигнала ∆R(t)/R0 в примененной схеме со-
ставляли примерно 5 · 10−5. Значения чувствитель-
ности такого масштаба относятся к весьма хорошим
результатам. Для сравнения, при использовании фс-
генераторов с модуляций нагревающих импульсов
на намного большей частоте до 1–20 МГц минималь-
ные изменения ∆R(t)/R0 составляют до 10−6–10−7.

Нагревание и зондирование осуществлялись с
фронтальной (интерфейс воздух/металл) и с тыль-
ной (интерфейс стекло/металл) сторон образца (см.
рис. 17). Измеренный коэффициент отражения на
λpump = 396 нм под углом 45◦ составил R = 0.14

и R = 0.19 с фронтальной и тыльной сторон соот-
ветственно. Измерение временной динамики диффе-
ренциального коэффициента отражения ∆R(t)/R0

проводились в диапазоне падающих энергий нагре-
вающего импульса от 0.1 до 1.2 мкДж.

В соответствии с измеренными значениями
коэффициента отражения диапазон поглощен-
ных флюенсов Fabs составил от 0.91 ± 0.02 до
10.9 ± 0.2 мДж/см2 с фронтальной и от 0.86 ± 0.02

до 10.3 ± 0.2 мДж/см2 с тыльной сторон соот-
ветственно. Последние значения поглощенного
флюенса (10.3–10.9 мДж/см2) являлись максималь-
но возможными неразрушающими флюенсами для
данного образца при частоте нагревающих импуль-
сов 500 Гц (период следования pump-импульсов
2 мс). До этих значений флюенса наведенные
изменения в образце были обратимы и результаты
измерений воспроизводились от серии к серии.

Для каждой энергии нагревающего импульса из-
мерения временной динамики дифференциального
коэффициента отражения ∆R(t)/R0 в диапазоне от
−3 до 300 пс выполнялись по N = 5 раз. Погреш-
ность измерения величины ∆R(t)/R0 определялась
как величина среднеквадратичного отклонения при
усреднении по N = 5 измерениям.

ГИДРОДИНАМИЧЕСКИЙ КОД

Зацепление за вещество — координата по

Лагранжу. Поскольку поперечные размеры нагре-
вающего лазерного пятна (∼ 100 мкм) значительно
превышают как толщину пленки (0.073 мкм), так
и глубину (< 2 мкм), до которой гиперзвук про-
ходит в стекло в нашем эксперименте, моделирова-
ние проводилось в одномерной (1D) геометрии. При
этом искомые переменные зависят от одной про-
странственной координаты x. Будем отсчитывать
ее от начального (невозмущенного) положения кон-
такта пленки и стекла. Пусть ось x направлена от
контакта в сторону пленки. В 1D-геометрии удоб-
но использовать координаты Лагранжа (см. [23],
глава VIII, §2).

При моделировании системы, состоящей их сло-
ев веществ с существенно разными термомеханиче-
скими свойствами (никель и стекло), это особенно
удобно. Дело в том, что лагранжева координата кон-
такта разных веществ не меняется во времени — так
сказать, вморожена в вещество; в лагранжевой схе-
ме мы пренебрегаем взаимной диффузией веществ.
Хотя, разумеется, этот контакт смещается по эйле-
ровой оси x с течением времени. Эйлерова ось отно-
сится к лабораторной системе координат.

В качестве лагранжевой координаты x0 берем эй-
лерову координату x покоящихся до воздействия ла-
зера материальных частиц: x0 = x. В 1D-геометрии
частицами являются тонкие плоские слои вещества.
Траектории частиц во времени суть x(x0, t). В раз-
ностной аппроксимации шаг по лагранжевой сетке
∆x0 выбирается нами так, чтобы масса вещества
внутри каждого шага была одинакова. Если в на-
чальном состоянии распределение плотности одно-
родно по пространству, то такой шаг будет один и
тот же по всему пространству, занятому этим одно-
родным веществом.

В рассматриваемом случае имеются слои с раз-
личной начальной плотностью: пленка никеля с
плотностью ρ0|Ni = 8.907 г/см3 и подложка из стек-
ла с плотностью ρ0|gl = 2.23 г/см3. Будем соблю-
дать условие равенства масс на разностном шаге по
лагранжевой переменной и в никеле, и в стекле. Из-
за меньшей плотности стекла шаг ∆x0 в стекле бу-
дет больше:

∆x0|gl = ∆x0|Ni(ρ0|Ni/ρ0|gl) = 3.99∆x0|Ni.

Двухтемпературная специфика. Во время
действия лазерного фс-импульса и до времен по-
рядка времени электрон-ионной релаксации teq тем-
пературы электронной Te и ионной Ti подсистем
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металла различаются [24–28]; это двухтемператур-
ные (2Т) состояния: Te > Ti [29, 30]. Дело в том,
что энергию лазерного импульса поглощают элек-
троны зоны проводимости [31] во внутри- и меж-
зонных переходах; в никеле последние доминируют.
При старте в наших расчетах от комнатной темпера-
туры Trt эти электроны являются сильно вырожден-
ными: Trt ≪ TF , TF = EF /kB, EF ∼ 10 эВ — ферми-
евская энергия. Отношение TF /Trt ∼ 300. Такого же
порядка и соотношение теплоемкостей электронной
и фононной подсистем при комнатной температуре.

Поэтому нагрев электронов с их максимальной
температурой до нескольких килокельвинов (кК) не
означает, что после электрон-ионной релаксации ме-
талл будет расплавлен. Ситуация с температурой
при переходе с 2Т- на 1Т-стадию определяется, во-
первых, разумеется, энергией Fabs и, во-вторых (это
менее тривиально), тем, как соотносятся толщина
пленки df и толщина слоя прогрева dT в объемной
мишени [13,32]. Зависимость от указанного отноше-
ния связана с громадным значением теплопровод-
ности металла [13] для снижения температуры Te в
скин-слое на 2Т-стадии.

За время порядка teq температуры подсистем вы-
равниваются. В этом заключается электрон-ионная
релаксация. В рассматриваемых нами эксперимен-
тальных условиях поглощенная электронами энер-
гия лазера Fabs ограничена величиной 11 мДж/см2.

При этом значении Fabs и для нашей пленки (ни-
кель, df ≈ 70 нм, теплопроводность стекла мала) и
после релаксации температур Te и Ti температура
никеля на фронтальной (т. е. облучаемой) поверх-
ности увеличивается примерно на 800 К по сравне-
нию с комнатной, см. рис. 18; температура плав-
ления никеля 1728 К. Хотя максимальное значе-
ние электронной температуры Te при поглощении
энергии 10.9 мДж/см2 и длительности нагревающе-
го импульса 150 фс составляет Te|max ≈ 2.8 кК,
см. рис. 18.

Зеленая и черная кривые на рис. 18 относятся
к плотности. Направленные влево синие стрелки на
этих кривых указывают на вертикальную ось плот-
ностей слева. Минимум плотности на черной кри-
вой смещен относительно минимума зеленой кривой
примерно на 3 пс — показано двусторонней стрел-
кой 3. Это связано с тем, что столько времени нуж-
но волне разрежения, чтобы пройти толщину скин-
слоя. При этом глубина минимумов примерно оди-
накова. Дело в том, что температура на фронталь-
ной поверхности (fr) выше, чем в толще скин-слоя.
Зато в толще скин-слоя начинает действовать су-
щественное растягивающее напряжение. Это сни-
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Рис. 18. Развитие ситуации в первые пикосекунды после

воздействия нагревающего импульса — его ширина во вре-

мени показана цифрой 1. Время t отсчитывается от макси-

мума интенсивности Ipump(t) этого импульса. Зеленая ρ|fr
(ρ на фронтальной поверхности) и черная ρ|sk (плотность

ρ, усредненная по скин-слою) кривые показывают сниже-

ние плотности из-за расширения и рост плотности из-за

остывания скин-слоя. См. текст

жает плотность. Указанные два эффекта пример-
но компенсируют друг друга. Соответственно, плот-
ность никеля в минимумах оказывается примерно
одинаковой.

Максимум электронной температуры Te(t) на
рис. 18 находится на нисходящем крыле возле пере-
гиба кривой Ipump(t) нагревающего импульса — ср.
максимум зависимости Te(t) и зависимость Ipump(t),

показанную цифрой 1.

Резкий слом временных зависимостей Te(t) и
Ti(t) обусловлен сменой режимов от 2Т к 1Т. 2Т-
стадия длится около 1 пс: время релаксации в нике-
ле при данной поглощенной энергии равно teq ≈ 1

пс. После слома имеет место инверсия температур
Te и Ti — метка 2 на рис. 18. На 1Т-стадии происхо-
дит медленный подъем плотности из-за остывания
приповерхностного слоя пленки.

Двухтемпературная гидродинамика. Чтобы
непрерывным образом описать 1) 2Т-стадию, 2) по-
степенный переход от 2Т- к 1Т-стадии (однотемпе-
ратурные состояния Te = Ti), 3) развитие собы-
тий на 1Т-стадии, требуются 2Т- физическая модель
и 2Т-гидродинамический код (2Т-гд-код). Этот код
был разработан в нашей группе. Он успешно при-
меняется ко многим задачам, возникающим в физи-
ке ультракоротких лазерных воздействий. Система
уравнений 2Т-гидродинамики [33,34], используемая
в 2Т-гд-коде, имеет вид
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∂x(x0, t)

∂t
= v(x0, t), (8)

ρ
∂x(x0, t)

∂x0
= ρ0, (9)

∂v(x0, t)

∂t
= − 1

ρ0

∂P (x0, t)

∂x0
, P = Pe + Pi, (10)

∂Ee(x
0, t)

∂t
=

1

ρ0

∂

∂x0

(
κeρ

ρ0

∂Te
∂x0

)
− Pe

ρ0

∂v

∂x0
−

−α(Te − Ti) +
Q(x0, t)

ρ
, (11)

∂Ei(x
0, t)

∂t
= −Pi

ρ0

∂v

∂x0
+ α(Te − Ti), (12)

где Pe и Pi — электронное и ионное давления, Ee

и Ei — удельные (в расчете на единицу массы)
электронная и ионная энергии, α — коэффициент
электрон–ионного теплообмена, κe — коэффициент
электронной теплопроводности; ионная теплопро-
водность в металлах мала по сравнению с электрон-
ной, и здесь мы ею пренебрегаем. В указанной си-
стеме уравнений (8) — уравнение кинематики, (9) —
уравнение сохранения массы (уравнение непрерыв-
ности), которое в координатах Лагранжа сводится
к определению текущей плотности, (10) — закон со-
хранения импульса (уравнение движения Эйлера),
расплавленные металлы на наших пространственно-
временных масштабах с хорошей точностью можно
считать идеальными жидкостями, (11) и (12) — за-
кон сохранения энергии (теплового баланса), запи-
санный по отдельности для электронной и ионной
подсистем.

По сравнению с 2Т-моделью Анисимова и др. [26]
в уравнениях 2Т-гд-кода учтено гидродинамическое
движение вещества. Такое движение является важ-
ным как при повышенных значениях поглощенной
энергии Fabs, так и в ситуации с относительно малы-
ми значениями Fabs. При больших энергиях Fabs —
это метод описания формирования лазерных удар-
ных волн, кратера в мишени и лазерного факела.
При малых энергиях Fabs данный подход требуется
для анализа оптоакустических явлений.

В стекле (т. е. при x0 < 0; x0 = 0 соответствует
контакту никель–стекло) при малых нагревах сво-
бодными электронами в зоне проводимости прене-
брегаем. Соответственно, α = 0, Pe = 0, Ee = 0, и
уравнение (11) не используется. Теплопроводность
стекла мала. В данной серии расчетов пренебрега-
ем этой теплопроводностью. Амплитуды давлений
в стекле малы по сравнению с объемным модулем
стекла. Следовательно, в таком приближении дви-
жение в стекле является адиабатическим. Поэтому

в подложке в качестве уравнения состояния мы ис-
пользуем адиабату (изэнтропу)

pgl(ρ) = (ρ−2.23)(10.3+5.047(ρ−3.52)2)e0.13ρ. (13)

В изэнтропе (13) плотность ρ и давление pgl зада-
ются в единицах г/см3 и ГПа. Изэнтропа (13) исхо-
дит из точки, соответствующей состоянию при ком-
натных условиях. Эта изэнтропа близка к «холод-
ной» кривой стекла, поскольку комнатная темпе-
ратура невелика. Холодной кривой называют ну-
левую изотерму, совпадающую с нулевой изэнтро-
пой. Она исходит из точки с нулевыми давлением и
температурой.

Поглощение лазерного излучения описывается
тепловым источником

Q(x0, T ) =
Fabs√
πdskτL

Qt(t)Qx(x
0)

с временной зависимостью

Qt(t) = exp(−t2/τ2L),

где τL — длительность импульса. Как видим, время
t отсчитывается от максимума лазерного импульса.
Нагрев Q(x0, T ) — это единственная причина всех
последующих гидродинамических и термодинами-
ческих явлений. Этот «драйвер» действует только
через тепловое уравнение для электронов (11). Он
создает электронное давление и посредством нагре-
ва ионной подсистемы формирует ионное давление.
Эти давления через силовое уравнение (10) при-
водят вещество в движение. При этом суммарный
импульс остается равным нулю, поскольку импуль-
сом облака поглощаемых и отражаемых фотонов мы
пренебрегаем.

При облучении через стекло закон Бугера со
скин-слоем никеля, прилегающим к контакту, имеет
вид

Qx(x
0) = exp(−x0/dsk).

При облучении со стороны свободной (фронталь-
ной) поверхности поглощение лазерной энергии име-
ет место в скин-слое у фронтальной границы. Соот-
ветственно получаем

Qx(x
0) = exp((x0 − df )/dsk),

где df — толщина пленки.
Как указывалось выше, при использовании

лагранжевых переменных сохраняется разделение
никеля и стекла по координате x0. Это позволяет
при x0 < 0 (стекло) использовать в уравнениях
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(8)–(10) адиабату стекла Pgl(ρ) (Pe = 0) (тепловые
уравнения (11), (12) в стекле не нужны), а при
x0 > 0 (никель) необходимо применять уравнения,
разработанные для никеля.

Граничные условия. Никель и стекло связаны
граничными условиями. Это, во-первых, кинемати-
ческое условие

x(x0 − 0, t) = x(x0 + 0, t)

непрерывного примыкания соседствующих веществ
на их контактной границе. Во-вторых, динамиче-
ское условие — непрерывность давления на гра-
нице. В приближении теории упругости для нике-
ля на контакте непрерывны нормальная составля-
ющая напряжения со стороны никеля и давление в
стекле, которое описываем уравнением адиабаты. И,
в-третьих, тепловые условия.

В случае контакта двух теплопроводных сред
это условия непрерывности температуры и тепло-
вого потока. В данной серии расчетов будем пре-
небрегать малой теплопроводностью стекла. Тогда
тепловое условие ставится только для никеля. Оно
требует равенства нулю теплового потока в никеле
на контакте со стеклом.

Физическая модель. В наших предыдущих
работах был вычислен электронный вклад в сво-
бодную энергию никеля [35, 36]. Вычисления бы-
ли осуществлены с помощью квантовомеханических
подходов методом функционала плотности (density
functional theory, DFT). Для удобства использова-
ния при гидродинамическом численном моделиро-
вании полученные DFT-данные были описаны с по-
мощью компактных аналитических выражений, ко-
торые имеют вид

Ee

[
Дж
м

]3
=

KS

K + S

(
ρ

ρ0

)0.6

,

Pe [Па] = 1.1
KS

K + S

(
ρ

ρ0

)1.1

,

K [Па] = 1077T 2
e /2, S [Па] = 1.275 · 10−4 T 1.3

e .

В этих выражениях энергия приведена в расчете на
единицу объема, электронная температура Te дает-
ся в градусах Кельвина, ρ0 = 8.9 г/см3.

Для ионной подсистемы используется табули-
рованное широкодиапазонное уравнение состояния
(УРС) никеля, построенное Хищенко [37–45]. Сумма
электронного и ионного уравнений термодинамиче-
ских состояний дает нам термодинамику, необходи-
мую для работы 2Т-гд-кода.

Коэффициент электрон-ионного теплообмена
вычислялся как

α = α0(Trt/Te)
0.3,

где α0 = 7 · 1017 Вт/К · м3. Это аппроксимация
DFT-расчетов [46, 47] в интересующем нас диапа-
зоне средних по величине электронных температур
0.3 кК< Te < 5 кК. Здесь Trt = 0.3 кК — комнатная
температура. Например, при Te = 2 кК эта формула
дает α = 4 · 1017 Вт/К · м3. Это довольно большое
значение коэффициента электрон-фононного взаи-
модействия. Поэтому электрон-ионная релаксация
протекает достаточно быстро, см. рис. 18, teq≈1 пс.

Коэффициент электронной теплопроводности
в твердом никеле подсчитывался как комбинация
электрон-электронного κee(ρ, Te) и электрон-
ионного κei(ρ, Te, Ti) вкладов [35, 36, 46, 48]:

κe [Вт/м · К] = 1/(1/κee(xk, tk) + 1/κei(xk, tk, Ti)),

где xk = ρ/ρ0k — нормировка плотности,
ρ0k = 9.0191 г/см3 — плотность никеля при нулевых
давлении и температуре, tk = 6Te/TF (xk) — норми-
ровка электронной температуры на фермиевскую
энергию (температуру), TF (x) = 8.6 · 11605 x2/3 К.
Здесь использована фермиевская энергия никеля
8.6 эВ, определенная по данным квантовомеханиче-
ского расчета методом DFT [36,46].

Электрон-электронный вклад в теплопровод-
ность в единицах Вт/м·К аппроксимировался
аналитическим выражением через нормированные
плотность и электронную температуру:

κee(xk, tk) =
0.04214

xk

tk
1 + 17.322 tk + 11.551 t2k

. (14)

Пропорциональность температуре Te в формуле (14)
следует из начального участка (т. е. при малых Te)

зависимости электронной теплоемкости от темпера-
туры Te. Знаменатель учитывает факторы, связан-
ные, во-первых, с насыщением роста теплоемкости
с температурой Te, во-вторых, с частотой электрон-
электронных столкновений νee и, в-третьих, с изме-
нением скорости электронов на поверхности Ферми.
В частоту νee входят рассеяния s-электронов на s-
и d-электронах [48–54].

Расчеты электрон-фононного вклада в тепло-
проводность κei были выполнены в рамках двух-
параболической модели никеля [36,46], так же как и
расчеты κee (14). Приближенная аналитическая за-
висимость для вклада κei [Вт/м·К] имеет вид

κei(xk, tk, Ti) = 96
xk
xrt

y(xk)

y(xrt)

Trt
Ti

cv(tk)

cv(trt)
. (15)
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В двухпараболической модели плотность элек-
тронных состояний (электронный спектр, density-
of-states, DoS) приближенно описывается двумя
отдельными параболами. Одна из парабол относит-
ся к s-зоне, другая — к d-зоне [36, 46]. Множители
xk/xrt и y(xk)/y(xrt) в выражении (15) следуют из
дебаевской теории фононов в кристалле твердого
тела [49], см. на сайте журнала приложение к
этой статье с подробными вычислениями, правда
для меди. Далее эта модель была обобщена на
никель. Отношение y(xk)/y(xrt) пропорционально
квадрату амплитуды нулевых колебаний атомов
в решетке ~

2/matomkBΘD, где ΘD — дебаевская
температура [49, 50].

Частоты электрон-фононных столкновений про-
порциональны квадрату амплитуды тепловых коле-
баний атомов в решетке. Этот квадрат пропорцио-
нален фононной температуре. С этим связано появ-
ление множителя с отношением температур Trt/Ti,

где Trt — комнатная температура. Благодаря отно-
шению y(xk)/y(xrt) амплитуда тепловых колебаний
нормируется на амплитуду нулевых колебаний.

При температуре Trt в 1Т-состоянии (Ti = Te)

теплопроводность никеля равна 96 Вт/м·К. Послед-
ний множитель в выражении (15) обусловлен за-
висимостью электронной теплопроводности металла
от электронной теплоемкости. Через него в выра-
жение (15) входит зависимость κei от электронной
температуры.

Вспомогательные функции, использованные в
выражении (15), имеют вид

y(x) = (1 + β)
x2a+1

1 + β xa+1
,

β =
a− b

b+ 1
, a = 2.019690, b = 0.680616,

cv(t) = t
1 + 5.269902 t2

1 + 3.059328 t2.094269
,

xrt = ρ0/ρ0k, ρ0 — плотность никеля при комнатной
температуре, Trt = 300 К, trt = 6Trt/TF (xrt). Коэф-
фициенты a и b — это показатели степеней двухсте-
пенной аппроксимации холодной кривой никеля по
плотности. Холодная кривая pcold(ρ) является одно-
временно нулевой изэнтропой и нулевой изотермой.
Степень a характеризует отталкивание, а степень
b — притяжение.

Учет упругости никеля в 2Т-модели. Прин-
ципиальным отличием твердого вещества от других
фазовых состояний (жидкость, газ) является сило-
вая реакция на деформацию формы. При измене-
нии формы возникает сдвиговое напряжение, кото-

рое добавляется к изотропному гидростатическому
давлению, определяемому уравнением термодина-
мического состояния. Это положение сохраняется и
при рассматриваемом здесь 1D-течении вдоль оси x,
т. е. одноосная деформация также приводит к появ-
лению сдвигового напряжения. В 1D-геометрии де-
формация заключается в изменении длины отрезка
∆x в лабораторной системе координат. Изменение
длины связано с изменением плотности. При этом в
поперечных направлениях длины отрезков ∆y и ∆z

остаются неизменными, т. е. при изменении плотно-
сти меняется форма прямоугольного параллелепи-
педа ∆x×∆y ×∆z.

Добавку от упругости учитываем только в ни-
келе. Течение в стекле по-прежнему описываем с
помощью уравнения адиабаты (13). При 1Т-1D-
движении вдоль оси x имеем

P ⇒ Pxx = P (ρ, T )− Sxx,

E|sum ⇒ E(ρ, T ) + (43G)(∂ξ/∂x
0)2/2ρ,

(16)

где ξ = x(x0, t)− x0, Sxx = (43G)∂ξ/∂x
0, G — модуль

сдвига. Как говорилось выше, x и x0 — это эйлерова
(координата материальной частицы в лабораторной
системе координат) и лагранжева (постоянная мет-
ка материальной частицы) координаты.

Таким образом, в системе уравнений гидроди-
намики к давлению по Паскалю P (ρ, T ) добавляет-
ся продольная компонента сдвигового напряжения.
Полная внутренняя энергия E|sum при этом состо-
ит из двух слагаемых. Во-первых, это гидростатиче-
ская внутренняя энергия E(ρ, T ) и, во-вторых, это
потенциальная энергия упругой деформации в рас-
чете на единицу массы

Eelast = (4/3)G(∂ξ/∂x0)2/2ρ.

Этот вклад в энергию обусловлен деформацией па-
раллелепипеда ∆x × ∆y × ∆z. В упругом случае в
системе уравнений в энергетическом балансе опе-
рируем с полной внутренней энергией E|sum вме-
сто гидростатической внутренней энергии E(ρ, T )

в пластическом случае. Эта энергия вычисляется
по уравнению состояния по известным плотности и
температуре.

Посмотрим, как в 2Т-случае изменится ситуа-
ция при переходе от пластической аппроксимации
с системой уравнений (8)–(12) к уравнениям с уче-
том упругости. При учете сдвиговой упругости ка-
чественная картина движения не меняется, ампли-
туды изменений температур примерно сохраняются,
но скорость звука возрастает. Соответственно, убы-
вает период колебаний [34]. Поэтому для аккуратно-
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го сравнения расчетных и экспериментальных вре-
менных зависимостей учет сдвигового напряжения
принципиально важен. В расчетах было взято зна-
чение G = 82 ГПа.

Максимальные значения продольного напряже-
ния в условиях наших опытов являются значитель-
ными. Они достигаются на первых пикосекундах и
составляют примерно 7 ГПа для расчета с погло-
щенной энергией Fabs = 10.9 мДж/см2, см. так-
же рис. 3 и 18, иллюстрирующие данную ситуа-
цию. Порог ppl упругопластического перехода в ни-
келе при ультракоротком воздействии весьма высок:
ppl ≃ 50 ГПа [55]. При механических напряжениях
ниже этого порога никель необходимо описывать в
упругой аппроксимации.

В связи со сказанным отметим, что при ультра-
коротких воздействиях происходит сильное сближе-
ние порога ppl и порога pm, при котором имеет место
плавление металла на фронте ударной волны [56,57].
При темпах деформации ниже 106 с−1 указанные
пороги отличаются на 2–3 порядка. Ультракорот-
ким импульсам соответствуют темпы деформации
порядка 109 с−1. При этом пороги ppl и pm разнятся
менее, чем на порядок.

МЕТОД ТРАНСФЕР-МАТРИЦЫ

Основной вклад в отражение от пленки металла,
достаточно толстой по отношению к масштабу δsk,
дает скин-слой. Слой прилегает к облучаемой по-
верхности. При фронтальном воздействии это гра-
ница пленки никеля с воздухом. Нас будет интере-
совать отражение на диагностической длине волны
λprobe = 793 нм. Для этой длины волны толщина
скин-слоя δsk = 13–14.3 нм [19].

Берем с определенным запасом по толщине слой
L у поверхности, который толще, чем скин-слой δsk.
Расчет проведен для слоя толщиной L = 30 нм. Бу-
дем использовать гидродинамические профили (5),
выполненные с шагом по пространству ∆x = 0.1 нм.
По ним с помощью оптической модели вычисля-
ем дискретный профиль комплексной диэлектриче-
ской проницаемости (6) в слое L, который содержит
L/∆x = 300 значений комплексной величины ǫ.

Соответственно разбиваем слой L на N = 300

подслоев с координатами границы xj+1 между со-
седними подслоями, в которых волновые числа рав-
ны соответственно kj+1 и kj . В этом разделе ось x
направлена в сторону подложки, как и падающее из-
лучение. Номера подслоев возрастают с удалением

от стеклянной подложки, т. е. крайний слой лежит
на границе с воздухом и имеет номер 300.

Тогда для амплитуд падающей A и отраженной
B волн в последовательных слоях имеем рекуррент-
ные соотношения

Aj+1 =
e−ikj+1xj+1

2

[(
1 +

kj
kj+1

)
Aje

ikjxj+1+

(
1− kj

kj+1

)
Bje

−ikjxj+1

]
, (17)

Bj+1 =
eikj+1xj+1

2

[(
1− kj

kj+1

)
Aje

ikjxj+1+

(
1 +

kj
kj+1

)
Bje

−ikjxj+1

]
. (18)

Пренебрегаем излучением, входящим в слой L

со стороны подложки. Тогда, полагая A1 = 1,
B1 = 0, коэффициент отражения от такой много-
слойной структуры из последовательности подслоев
находим как

R = |BN/AN |2 . (19)

При волновом числе в вакууме k0 = 2π/λ, где λ —
длина волны в вакууме, в каждом однородном под-
слое комплексное волновое число k = k0n опреде-
ляется его комплексным показателем преломления
n = n1 + i n2, где

n1 =

√√
ǫ21 + ǫ22 + ǫ1

2
, n2 =

√√
ǫ21 + ǫ22 − ǫ1

2

с действительной ǫ1 и мнимой ǫ2 частями диэлек-
трической проницаемости.

ОПТИЧЕСКАЯ МОДЕЛЬ НИКЕЛЯ

Модификация модели Друде – Лоренца.

Для сравнения с экспериментом (см. рис. 16)
требуется оптическая модель никеля. Эта модель
нужна для того, чтобы пересчитывать данные
гидродинамического моделирования в значения
терморефлектанса (7). Оптическая модель позволя-
ет определять отклонения от известной величины
диэлектрической проницаемости никеля при ком-
натных условиях. Отклонения вызваны вариацией
плотности и температуры никеля возле их исходных
значений, соответствующих комнатным условиям.

Разработанная нами оптическая модель опира-
ется на приближение Друде – Лоренца с четырьмя
неизвестными величинами и известные три спра-
вочные значения диэлектрической проницаемости
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ǫ = ǫ1+iǫ2 и электрического сопротивления ρres при
комнатных условиях. Один параметр модели оста-
ется свободным. Этот параметр используется так,
чтобы обеспечить наилучшее согласие с эксперимен-
тально измеренной зависимостью терморефлектан-
са (7) от времени, см. рис. 16.

В приближении Друде – Лоренца действительная
и мнимая части диэлектрической проницаемости
могут быть записаны соответственно в виде

ǫ1(ωprobe) = 1− f
ω̂2
p

1 + ν̂2
+ f0

Ω̂2
p(ω̂

2
0 − 1)

(ω̂2
0 − 1)2 + ν̂20

, (20)

ǫ2(ωprobe) = f
ω̂2
p

1 + ν̂2
ν̂ + f0

Ω̂2
pν̂0

(ω̂2
0 − 1)2 + ν̂20

. (21)

В этих выражениях все частоты обезразмерены на
частоту ωprobe падающего диагностического излуче-
ния на длине волны λ =793 нм. Безразмерные вели-
чины имеют специальный значок сверху, например,
ω̂p. Параметры Ω̂p, ν̂, ν̂0, ω̂0 — это безразмерные ве-
личины. Они имеют следующий смысл: плазменная
частота d-электронов, частоты релаксации s- и d-
электронов и частота осцилляций связанного уров-
ня; f и f0 — это силы осцилляторов. Силы осцилля-
торов являются безразмерными числами. Частоту
осциллятора ω0 относим к электронам d-зоны.

Безразмерный квадрат плазменной частоты
s-электронов ω̂p при их концентрации ns может
быть записан в виде

ω̂2
p =

α2

π
nsa

3
B

(
λ

aB

)2

.

Здесь aB — боровский радиус, α — постоянная тон-
кой структуры, λ — длина волны диагностического
импульса.

Слагаемое с множителем f в формулах (20), (21)
относят к вкладу свободных электронов [58, 59].
Кроме вклада свободных электронов в полукван-
товом приближении Друде – Лоренца имеется сум-
ма членов, связанных с валентными электронами
[58, 59]. В никеле свободными являются электро-
ны s-зоны. Никель — это переходной металл с
s- и d-электронами. Зонная структура никеля [Ar]
3d8 4s2 или [Ar] 3d9 4s1 изучена с помощью DFT —
квантовомеханического численного моделирования,
см., например, работы [36,46, 60].

Будем относить d-электроны никеля к валент-
ным. В интересующей нас области спектра ЭМ-
волн основную роль в поглощении и отражении ЭМ-
излучения играют s- и d-электроны. В никеле, во-
первых, велика концентрация d-электронов (3d8 4s2

или 3d9, т. е. d-электронов в 4 или 9 раз больше,
чем s-электронов) и, во-вторых, d-зона немного вы-
ступает за уровень Ферми. В работах [36, 60] раз-
ница между верхним краем d-зоны и Ферми уров-
нем обозначена как E2. Энергии E1 и E2 ограни-
чивают d-зону снизу и сверху. В никеле величина
E2 положительна и мала (≈ 2 кК). Соответствен-
но, плотность электронных энергетических уровней
на поверхности Ферми велика. Поэтому, например,
коэффициент γ (ce = γTe) в никеле больше, чем,
скажем, у благородных металлов; ce — электронная
теплоемкость.

Свободные электроны ответственны за внутри-
зонные переходы. В однозонных металлах на инте-
ресующей нас частоте ЭМ-излучения лоренцевские
слагаемые в формулах (20), (21) можно опустить.
Так обстоит дело в металлах с отрицательными и
довольно большими по модулю значениями E2. То-
гда поглощение A = 1−R обычно минимально (про-
центы и менее; для фотонов с энергиями меньше
E2); R — коэффициент отражения.

Другое дело переходные металлы с положитель-
ными и небольшими по величине значениями энер-
гии E2 края d-зоны. Здесь межзонные переходы ве-
лики и доминируют над однозонными переходами. В
никеле это переходы из d- в s-зону. Коэффициенты
поглощения A составляют десятки и многие десят-
ки процентов. Соответственно лоренцевские слагае-
мые становятся важнее слагаемого с множителем f

в формулах (20), (21).
В статьях [58,59] оптические характеристики ни-

келя описаны в широком частотном интервале. При
этом лоренцевский отрезок ряда состоит из четырех
слагаемых. В нашем случае необходимо ограничить-
ся одной длиной волны λ = 793 нм, соответству-
ющей частоте диагностического излучения. Поэто-
му в формулах (20), (21) мы оборвем лоренцовскую
сумму на первом слагаемом.

Параметры нашей оптической модели.

Обозначим

Ω2
0

ν0
= p,

ω2
0 − 1

ν0
= q.

Здесь и ниже для простоты записей значки обез-
размеривания над буквами типа Ω̂0 будем опускать.
Тогда

ǫ1(ωprobe) = 1− f
ω2
p

1 + ν2
+ f0

p

q2 + 1
q,

ǫ2(ωprobe) = f
ω2
p

1 + ν2
ν + f0

p

q2 + 1
,
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откуда

q(ν) =
(1− ǫ1)(1 + ν2)− fω2

p

f ω2
p ν − ǫ2 (1 + ν2)

, (22)

p(ν) =

(
ǫ2 − f

ω2
p

1 + ν2
ν

)
q2(ν) + 1

f0
. (23)

Обезразмерив статическую проводимость σ

частотой ωprobe диагностического света, введем
величину

σ0 = 4π
σ

ωprobe
=
ω2
p

ν
+

Ω2
p

ν0
=
ω2
p

ν
+ p(ν). (24)

При удельном электрическом сопротивлении нике-
ля ρres [нОм·м] и длине волны света λ [нм] величина
(24) равна

σ0 = 60λ/ρres.

При комнатных условиях мы варьировали параметр
ρres между справочными значениями от 69 [61, 62]
до 87 нОм·м [63]. Как говорилось выше, параметр
ρres — это один из трех параметров нашей модели
(вместе с ǫ1,2 при комнатных условиях), которые бе-
рутся из справочной литературы.

Из (24) получаем

p(ν) = σ0 −
ω2
p

ν
. (25)

Приравнивая (23) и (25), получаем уравнение для
функции ν(f), зависящей от свободного параметра
нашей оптической модели f. Уравнение имеет вид

ǫ2 = f
ω2
p

1 + ν2
ν +

σ0 − ω2
p/ν(

(1−ǫ1)(1+ν2)−f ω2
p

f ω2
p ν−ǫ2 (1+ν2)

)2
+ 1

. (26)

Для используемой нами длины волны пробного
излучения λ = 793 нм справочные значения дей-
ствительной и мнимой частей диэлектрической про-
ницаемости при комнатных условиях были взяты в
двух видах. Во-первых, из работы [20]:

ǫ1 = −18.826, ǫ2 = 21.452.

И, во-вторых, из работы [21]:

ǫ1 = −13.54, ǫ2 = 21.777.

Результаты вариации трех справочных парамет-
ров ǫ1,2, ρres в указанных выше пределах сравнива-
лись. Затем проводилась оптимизация по свободно-
му параметру. Свободным параметром в нашей мо-
дели выступает сила осциллятора f, связанного со
свободными электронами.

Отклик ǫ на изменение ρ и T.Нестационарное
гидродинамическое течение, запущенное нагреваю-
щим лазерным импульсом (pump-импульс), нетри-
виальным образом меняет плотность и температуру
во времени и в пространстве. т. е. в скин-слое ло-
кальные плотность и температура (5) изменяются
во времени. Соответственно во времени меняются
локальные значения ǫ (6). Следовательно, меняют-
ся амплитуды Ai, Bi в цепочке узлов i = 1, 2, ..., 300,

описанных в разделе «Метод трансфер-матрицы».
Итак, в каждый момент времени имеется мгновен-
ное распределение амплитуды Ai, Bi, а значит, мгно-
венное значение терморефлектанса (19) и (7).

Чтобы провести вычисление, необходимо знать,
как диэлектрическая проницаемость отклоняется от
своего значения при комнатных условиях при откло-
нении плотности и температуры никеля от комнат-
ных значений.

Введем приведенную плотность кристалла
ξ = ρ/ρ0, где ρ0 = 8.93 г/см3 — плотность при
нулевых давлении и температуре. При комнат-
ных условиях приведенная плотность составляет
xr = 8.90/8.93. При варьировании плотности и
температуры T квадраты плазменных частот при-
обретают множитель x/xr, а частоту ν заменяем на

νT (x, T ) = ν
x

xr

u(xr)

u(x)
t
γ + T/ΘD

γ + Tr/ΘD
(27)

с функцией

u(x) = ((a+ 1)xa − (b+ 1)xb)/(a− b),

a = 1.852, b = 1.004.

Остальные величины имеют следующий смысл:
Tr = 293 К — комнатная температура, параметр
γ ≃ 12, ΘD = 375 К — температура Дебая для
никеля. Первые два сомножителя учитывают за-
висимость фермиевской скорости электронов и
длины свободного пробега от плотности. Последний
множитель описывает зависимость длины пробега
электрона от температуры решетки кристалла.

Тогда в слое с заданными значениями темпера-
туры и плотности действительная и мнимая части
диэлектрической проницаемости составляют

ǫ1(x, T ) = 1− f
ω2
p (x/xr)

1 + ν2T
+ f0

p (x/xr)

q2 + 1
q,

ǫ2(x, T ) = f
ω2
p (x/xr)

1 + ν2T
νT + f0

p (x/xr)

q2 + 1
.

Таким образом, получаемые с использованием
гидродинамического кода данные об эволюции поля
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Рис. 19. Устойчивое сохранение главных особенностей рас-

четной зависимости ∆R(t)/R0 : черная, малиновая и зеле-

ная кривые при вариации параметров. См. описание обо-

значений в тексте. Красная кривая — это эксперимент, см.

рис. 1, 2

плотности и температуры позволяют определить оп-
тические константы в каждом из выделенных под-
слоев i = 1, 2, ..., 300 и с использованием рекур-
рентных соотношений (17), (18) и выражения (19)
найти коэффициент отражения от рассматриваемой
многослойной структуры подслоев, покрывающей
скин-слой.

Чувствительность зависимости ∆R(t)/R0 к

выбору параметров оптической модели. Как
сказано выше, разработанная оптическая модель за-
висит от трех справочных величин ǫ1, ǫ2, ρres и од-
ного свободного параметра f. Пределы вариации
справочных величин были представлены выше. На
рис. 19 показано, каким образом вариация парамет-
ров сказывается на пересчете гидродинамических
профилей в теоретическую зависимость ∆R(t)/R0.

Представленные на рис. 19 примеры расчетных
зависимостей ∆R(t)/R0 охватывают пределы вари-
ации параметров модели. Кривые (черная и мали-
новая) относятся к значениям ǫ1, ǫ2, взятым соглас-
но работе [20] (обозначение «JC» на рисунке). На
этих двух кривых меняются удельное электрическое
сопротивление ρres между крайними справочными
значениями [61–63] и свободный параметр f. Зеле-
ная кривая относится к значениям ǫ из работы [21].

Как видим, увеличение сопротивления никеля
ρres уменьшает отражение, как и должно быть, см.
рис. 19. Аналогично действует переход от диэлек-
трической проницаемости ǫ по [20] к ǫ по [21]. При
нормальных условиях на диагностической длине
волны 793 нм коэффициент отражения R0 заметно
ниже по [21]: 0.69 против 0.74 по [20].

Таблица. Толщина скин-слоя

ǫ initial heated

JC, f = 0.001, ρres = 87 12.97 13.06

JC, f = 0.04, ρres = 68 13 13.06

Ordal, f = 0.001, ρres = 87 14.26 14.36

Кроме того, мы варьировали значение парамет-
ра γ в формуле (27) для частоты νT в пределах
от значения 4/5 до значения, равного 12 (учет до-
полнительных рассеяний электрона, обусловленных
неидеальностью решетки). Влияние изменений па-
раметра γ в указанных пределах мало. Оно меньше,
чем отличия черной, малиновой и зеленой кривых
на рис. 19.

Несмотря на вариацию черной, малиновой и зе-
леной расчетных кривых на рис. 19, их общая фор-
ма и положение особенностей во времени (миниму-
мы, максимумы) практически не меняются. Первые
четыре минимума 1, 2, 4 и 5 и максимум 3, свя-
занный с первым акустическим эхом, отмечены на
рис. 19. Соответствующие моменты времени (указа-
ны в скобках в пс): 1 (6.1), m1 (10; рис. 16), 2 (19.5),
3 (25.7), 4 (31.1), m2 (34.7, рис. 16), 5 (45.1).

Для сравнения важности вариации плотности
и температуры был выполнен расчет, в котором в
профиле (5) набор зависящих от времени темпера-
тур Ti(t) был заменен на постоянную температуру
750 К. Такова температура поверхности на интерва-
ле времен 30–40 пс при рассматриваемом здесь ва-
рианте с поглощением в пленке 10.9 мДж/см2. Как
говорилось выше, для вычисления временной за-
висимости ∆R(t)/R0 выполняется следующая про-
цедура. Во-первых, по набору (5) подсчитывает-
ся профиль оптических характеристик никеля (6).
Во-вторых, по набору мгновенных профилей (6)
определяется функция (7). Оказалось, что замена
Ti(t), i = 1, 2, ..., на постоянную температуру прак-
тически не сказывается на функции (7).

Поясним данный результат. Изменение темпе-
ратуры действует двояко. Во-первых, постепенное
охлаждение поверхностного слоя пленки со скин-
слоем приводит к постепенному росту плотности.
Это явление связано с коэффициентом теплового
расширения. Во-вторых, имеет место квазиадиаба-
тическое изменение температуры вследствие изме-
нения плотности в акустических волнах. Из срав-
нения результатов по функции (7) с переменной и
постоянной температурой в профиле (5) следует,
что почти полностью зависимость (7) определяет-
ся тем, что плотность меняется при охлаждении и
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распространении акустических волн. Изменение
температуры, связанное с движением волн, практи-
чески не влияет на зависимость (7).

Дело в том, что температура входит в результат
через зависимость частоты ν (27) от температуры,
а это влияние слабо. При этом зависимость функ-
ции (7) от плотности действует через плазменные
частоты. Это действие является определяющим.

Влияние нагрева и расширения на скин-

слой. Толщина скин-слоя dsk(ρ, T ) практически не
меняется при нагреве и изменении плотности ρ в
нашем эксперименте. Подсчет по приведенной вы-
ше оптической модели дает значения, приведенные
в таблице. В этой таблице приведены значения dsk
при изменении состояния вдоль бинодали никеля;
бинодаль — это кривая сосуществования конденси-
рованной и паровой фаз. Давление пара на бинодали
определяет давление насыщенного пара.

Колонка «initial» в таблице относится к ком-
натным значениям плотности 8.907 г/см3 и тем-
пературы T = 293 К. В колонке «heated» дают-
ся значения dsk при температуре 750 К и плотно-
сти 8.907 (1 − 0.014) г/см3 (на 0.014 г/см3 снижа-
ется плотность при повышении температуры). Тем-
пература 750 К соответствует поглощенной энер-
гии 10.9 мДж/см2 на временах 10–40 пс согласно
двухтемпературному гидродинамическому расчету.
Уменьшение плотности на 1.4% связано с тепловым
расширением никеля. Коэффициент теплового рас-
ширения взят из справочника. Строки в таблице со-
ответствуют принятым в оптической модели вели-
чинам диэлектрической проницаемости никеля ǫ и
параметрам f, ρres, входящим в оптическую модель;
см. пояснения на рис. 19 (JC, Ordal) и его описание
в тексте.
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