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a b s t r a c t

In this paper, the concentration magnetic phase transitions are described using the random interaction
fields’ method in combination with the Bethe–Peierls method. This approach allows us to take into ac-
count the correlation between magnetic moments and obtain a more accurate solution for the calcula-
tion of the Curie point in comparison with the use of the Kikuchi method, which is considered as the
most accurate method in the molecular field theory. As an example, we study the dependence of the
Curie point on the concentration of titanium in titanomagnetite. This material is one of the typical
natural ferrimagnetics.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The different variants of the method of the molecular field [1–
4] are often used to describe magnetic properties, because the
exact solutions to the task connected with the magnetic phase
transitions for 3-D lattices are absent. As a rule, these methods
give us the Curie point as higher than in reality and do not allow
us to describe the concentration of magnetic phase transitions.
Earlier, we proposed the random interaction fields’ method [5,6]
which allows us to describe such transitions, but it also gives us
the Curie point as higher than in reality. It is connected with the
absence of the accounting of the correlation between the magnetic
moments. In this work, in the framework of the random interac-
tion fields’ method, we use the idea proposed by Bethe–Peierls [1].
The comparison of the Curie point calculated using the methods of
the molecular field is only possible for plane lattice, for which the
exact solution was proposed by Onsager [3,7]. It turned out that
the method for constructing the distribution function of random
interaction fields allows us to obtain new results in the framework
of the idea of the molecular field compared with the methods
,
.ru (O. Dyachenko).
proposed by Bethe Peierls, Bragg-Williams, Onsager and Kikuchi:

1. This method can be applied to any types of exchange interac-
tions [5,8,9].

2. It allows us to describe the concentration of magnetic phase
transitions [10–13].

3. There is a possibility of the account of the variation of the Curie
point by reason of the diffusion of magnetic particles [14].

In this paper, we show a way to extend this method to the two-
sublattice magnetics. As an example, we study the dependence of the
Curie point on the concentration of titanium in titanomagnetite.
2. Random interaction fields’ method and Bethe–Peierls
method: combination

As known in the framework of the Ising model, the exact so-
lution to the phase transition is obtained only in the case of spin
chain. Onsager's solution is also obtained on a plane lattice for
direct interaction, from which follows the Curie temperature
Tc¼2.27 in dimensionless variables (magnetic moment μ, the ex-
change integral J and the Boltzmann constant kB equal to unity). In
dimensionless variables, in this case the Curie point, T zc = , where
z is the number of nearest neighbors. For a plane lattice, z T 4c= =
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Table 1
Comparison of the Curie points obtained numerically and analytically.

Number of the nearest
neighbors z

Curie point (analytical
solution)

Curie point (numerical
solution)

4 2.31 2.27
6 4.33 4.35
8 6.33 5.6
12 10.33 9.4
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(Bragg–Williams method [2]), which is significantly higher than
the exact value Tc¼2.27. The random interaction fields’ method
developed in our works [5,6] allows us to calculate the density
distribution of the molecular field W H( ):
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⎟⎟W H

B
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Here, φk is the molecular field formed on the selected atom placed
at the origin with the magnetic moment with the number k, p is
the density of atoms capable of exchange interaction (‘ferromag-
netic’ atoms), and M is the relative magnetic moment per atom
after the thermodynamic and configurational averaging.

From the equation

⎡
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H
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it is possible to obtain the condition for the occurrence of a
spontaneous magnetic moment,
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B
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where Tc is the Curie point. Consequently, a nonzero value of Tc is
possible if H B/ 10 > . For direct interaction, when Jkφ = for the
nearest neighbors and 0kφ = for the other particles, the magni-
tude H B/ 10 > leads to the condition p z2/> . Thus, the magnitude
p z2/c = is a critical concentration at which there is a possibility of
a spontaneous magnetic moment.

For indirect exchange, which is carried out through the con-
duction electrons, different types of ordering can be observed:
ferromagnetism H B/ 10( > ), antiferromagnetism H B/ 10( < − ) and
spin glass state H B/ 10( < ).

Note that Eq. (5) determines the Curie point Tc¼3.2; it is also
significantly higher than the exact value. It is connected with the
absence of the accounting correlation between the magnetic mo-
ments. In the method of the accounting correlation proposed by
Bethe and Peierls [1] in the first approximation, the essence of the
method is ‘immersion’ of the magnetic moment and its nearest
neighbors (for which the correlation is taken exactly) into the ef-
fective field created with other lattice atoms. The partition func-
tion S for zþ1 magnetic moments is the sum of two terms – S+ and
S− corresponding to the direction of the central spin ‘up’ and
‘down’. The effective field h is considered upward. Then
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where h Texp /α = [ ]. The exchange integral, the magnetic moment
and the Boltzmann constant are equal to unity. The relative
magnetic moment of the central atom is determined as

S S
S

, 8μ = −
( )

+ −

and for the ‘peripheral atom’
S z
S S

1
. 9( )μ α

α
= ∂

∂
+ ( )+ −

The equality 0 1μ μ= determines the dependence of the effective
field h on the temperature. It is easy to show that if h 0→ , this
equation leads to the equation for the determination of the tem-
perature T 1c ⪡ , below which h 0≠ is possible:

z x zx1 1 , 102( )− + = ( )

where x Ttanh 1/ c= [ ], as follows:

⎡
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1 1

1
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11c
=
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This result can easily be converted into a form obtained in the
framework of the ‘quasi-chemical method’. For z¼4, it follows the
Curie point Tc¼3. It turns out that for the temperature T 0> , the
effective field is h z 1> − . It gives reason to assume that the cor-
relation leads to an effective decrease of the exchange integral,
which is approximately z z1 /( − ) times. Then the corresponding
dimensionless Curie point calculated in Eq. (5) for the standard
lattices z 4, 6, 8, 12( = ) is equal to 2.31; 4.33; 6.33; 10.33( ). In
particular, the result for z¼4 is closer to the exact solution than
that using the method of Kikuchi, which is considered as the most
accurate method in the molecular field theory and requires a
significant computational work T 2.42c( = ), as seen in Tables 1 and
2.

Discrepancies in our data with the results presented in the
papers [15,16] explain the different conditions during the Monte
Carlo simulation, such as a different number of Monte Carlo steps
and the size of systems.
3. Two-sublattice magnets

If there are two sublattices, in accordance with the results
presented in [14], we can write the distribution function of ran-
dom interaction fields on the atoms of the first sublattice as
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The distribution function of random interaction fields on a se-
lected atom of the second sublattice is



Table 2
Comparison of the Curie points obtained using
different methods.

Method Curie point for z¼4

Bragg Williams 4
Bethe Peierls 2.89
Kikuchi 2.42
Our method 2.31
Onsager 2.27
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index k numbers the atoms of the first type, and l numbers the
atoms of the second type.

Here, m J11 1 1φ = , m1 is the magnetic moment per atom in the
first sublattice,and J1 is the exchange integral for the first sub-
lattice atoms. Then m J12 2 21φ = , m2 is the magnetic moment per
atom in the second sublattice, and J J21 12= are the exchange in-
tegrals for atoms of different sublattices. For m J21 1 12φ = , m J22 2 2φ = ,
notation is similar.

M , 201 1 1α β− = ( )

M . 212 2 2α β− = ( )

Here, φ12k is the exchange ‘field’ created by the atom number k of
the second sublattice on the selected atoms of the first sublattice
and placed at the origin, α is the probability of finding the atom
oriented ‘up’, β is the probability of finding the atom oriented
‘down’ and p is the concentration of ferromagnetic particles. M1 is
the relative magnetic moment for the atoms of the first sublattice,
and M m m1 1 1= 〈 〉 is the average magnetic moment of the atom of
the first sublattice. For the magnetic moment M2 notation is si-
milar. Then, the average moment per atom in the system is de-
termined as m m m /21 2¯ = (〈 〉 + 〈 〉) .

For the direct exchange,
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z1 is the number of the nearest neighbors of an atom of the first
sublattice, z2 is the number of the nearest neighbors of an atom of
the second sublattice, H p z J011 1 1 1= , H p z J012 2 2 12= ,
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where H p z J022 2 2 2= , H p z J021 1 1 21= .
Substantial simplification of the equations can be achieved by

replacing the distribution function of the random interaction fields
on the ‘rectangular function’ [6]. Then,
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We introduce the change of variables m kT H x/1 1 1( ) = ,
m kT H h/1 011 011( ) = , m kT H h/1 012 012( ) = , m B kT b/1 1 1= , m kT H x/2 2 2( ) = ,
m kT H h/2 022 022( ) = , m kT H h/2 021 021( ) = , m B kT b/2 2 2= , and then the
equation for the magnetization takes the form:
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at high temperatures and M 11⪡ , M 12⪡ :
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From Eqs. (24) and (25) by integration, we obtain
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The asymptotic behavior M1 and M2 at M 01 → and M 02 →
expressed by Eqs. (27) and (28), and in equations for B1 (13) and B2
(17), it is possible to drop out M1

2 and M2
2. In the opposite case at

M M T, 1, 01 2 → → the distribution function of the random inter-
action fields W(H) tends toward δ-function; therefore, Eqs. (24)
and (25) become
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It should be noted that in the case of the equivalence sub-
lattices and negative value H012 the solution of the system
M M1 2= − is antiferromagnet.

By solving Eqs. (27) and (28), we can obtain the following
systems in the zero approximation:
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These homogeneous equations are solvable when the de-
terminant is equal to zero:
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By expressing the magnetic moment M2 through the magnetic
moment M1 (in the zero approximation), we obtain the equation
for the determination of the magnetic moment M1, which has a
nonzero solution in case of the change of the sign ‘þ ’ on the sign



V. Belokon et al. / Journal of Magnetism and Magnetic Materials 401 (2016) 651–655654
‘� ’ and the sign ‘� ’ on the sign ‘þ ’ of the determinant. The first
change in the sign corresponds to the appearance of a nonzero
magnetic moment in the sublattice with a large exchange inter-
action (in this case M1). The second change of the sign in the ab-
sence of the interaction between the sublattices would mean the
emergence of the magnetic moment M2. If there is a weak inter-
action, the magnetic moment M2 occurs simultaneously with the
magnetic moment M1 and the second change in the sign corres-
ponds to a sharp growth of the vectorM2 due to the interaction J22.
With a strong interaction between sublattices the exchange in-
tegral J22 is weak and Eq. (32) has only one solution to the tem-
perature of the phase transition Tc, which corresponds to the ap-
pearance of the vector M1.

By substituting the values for h h h, ,011 012 021 and h022 we obtain
the following equation for the determinant:
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When the concentration of ‘ferromagnetic’ atoms p1 in the first
sublattices and the concentration of ‘ferromagnetic’ atoms p2 in
the second sublattices are reduced, the temperature of the phase
transition Tc is also reduced. At the temperature T 0c → , we obtain
the following expression:
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The above equation allows us to estimate the critical con-
centrations p1 and p2, below which the ordering in sublattices and
the system as a whole is impossible T 0c( = ).

Fig. 1 was obtained using Eq. (34). The phase diagram defines
the area of the concentrations p1 and p2 at which ordering in a
two-sublattice magnet material with the specified parameters
m m J J J1, 1.2, 1, 2, 0.51 2 1 2 12= = = = = − is possible.
4. Titanomagnetite

The approach formed above can be applied to titanomagnetite.
Fig. 1. The phase diagram defines the area of the concentrations p1 and p2 at which
ordering in a two-sublattice magnet material with the specified parameters
m m J J J1, 1.2, 1, 2, 0.51 2 1 2 12= = = = = − is possible.
Magnetite has an inverse spinel structure: OFe Fe Fe3 2 3
4( )[ ]+ + + . In

octahedral positions Fe3( )+ , there are only cations with a valence of
3 + . In tetrahedral sites Fe Fe2 3[ ]+ + there are twice more cations
with a valence of 2 + or 3 + .

The magnitude Ms of the cation dFe 3 53 ( )+ equals 5 Bμ , and the
cation dFe 3 62 ( )+ – 4 Bμ (it is connected with the number of un-
compensated electrons in the 3d-electron shell). Titanium ions
replace Fe3+ sites in tetrahedral positions and make the transition
Fe3+ in Fe2+ in octahedral positions. Thus, actually there are three
sublattices: Fe3+ in octahedral positions and Fe3+ with Fe2+ in the
tetrahedral positions. Negative exchange interaction is observed
between the sublattices 1–2 and 1–3.

Due to the fact that there is no interaction between sublattices,
the system of Eqs. (30) and (31) can be easily solved:
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From Eq. (27):
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We substitute M2 and M3 from the system of Eqs. (35) in Eq. (36).
Then
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The temperature at which the numerator is zero is the Curie point:
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Fig. 2. The dependence of the Curie temperature on the titanium concentration.
The solid curve was obtained experimentally [17]; the dashed curve was obtained
using the random interaction fields’ method.

0.992 0.994 0.996 0.998 1.000
Т
Tc

0.05

0.10

0.15

0.20

M

Fig. 3. Graph of dependence M1 on T T/ c in the immediate vicinity of Tc is shown by
means of the black line, M M2 3+ on T T/ c by means of the dashed line and
M M M2 3 1( + ) − on T T/ c by means of the dotted line at p¼1.

V. Belokon et al. / Journal of Magnetism and Magnetic Materials 401 (2016) 651–655 655
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The extreme case is considered to find the exchange integral J13
when the iron atoms are completely absent in sublattice 2, and in
sublattices 1 and 3 there are only the ions Fe2+. It is ulvöspinel.
Using the Curie temperature of ulvöspinel 150 C( − ° ) and Eq. (5),
we obtain the exchange integral J 3.85 1013

24= · . At a known value
J13 and the Curie point of magnetite 580 C( ° ), the exchange integral
J 1.66 1012

25= · is calculated.
Fig. 2 shows the dependence of the Curie temperature on the

titanium concentration. The solid curve was obtained experi-
mentally [17]; the dashed curve was obtained using the random
interaction fields’ method. Graph of dependence M1 on T T/ c in the
immediate vicinity of Tc is shown in Fig. 3 by means of the black
line, M M2 3+ on T T/ c by means of the dashed line and
M M M2 3 1( + ) − on T T/ c by means of the dotted line at p¼1.
5. Conclusion
1. The random interaction fields’ method got further develop-
ment: the accounting of the correlation using the Bethe–Peierls
method allowed us to significantly improve the assessment of
the Curie temperature for the standard lattices. In particular, for
a flat square lattice result was obtained Tc¼2.31, while the exact
solution of Onsager gave us the temperature Tc¼2.28, and the
most accurate, but extremely cumbersome approximate solu-
tion of Kikuchi based on the method of the molecular field – Tc
¼2.42.

2. The two-sublattice magnetic materials with two types of atoms
in the sublattices, with different values of ferromagnetic ex-
change interactions between sublattices, and with the presence
of antiferromagnetic interactions between sublattices, have
been studied.

3. The theoretical magnetic phase diagram in the plane p p1 2− ,
where p1 and p2 are the concentration of the exchange inter-
action of atoms of the first and second sublattices' two-di-
mensional two-sublattice magnet with specific values of the
parameters in the framework of the Ising model, was plotted.

4. The dependence of the Curie temperature on the concentration
of titanium in titanomagnetite was investigated. The plots ob-
tained using the random interaction fields’ method have turned
out in quantitative and qualitative agreement with the graph
obtained by means of the experiment.
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