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A B S T R A C T

The Curie point of a ferromagnetic material is determined in the framework of the Ising model by Oguchi’s
method and the random interaction fields’ method. The heat capacity of the system is also investigated. The
jump in the heat capacity is calculated at the Curie point. Comparison with known results is made.

1. Introduction

A well-known, effective (molecular) fields’ method has enabled the
qualitative understanding of the properties of ferromagnetic materials
in the theory of magnetism, although it is far from perfect quantita-
tively. This method overestimates the Curie point Tc. A noticeable im-
provement in this method, allowing for local interactions and correla-
tions of spins, is associated with the use of cluster methods [1–5] or by
means the random interaction fields’ method [6–10].

In contrast to the molecular field method, in Oguchi’s and Bethe-
Peierls methods, a cluster consisting of two (Oguchi’s method or +z[ 1]
Bethe-Peierls method) interacting magnetic moments, where z is the
number of nearest neighbors, is placed in an effective field. Thus,
considering the correlation effectively decreases the exchange integral.
In particular, in the framework of the Bethe-Peierls method, the ex-
change integral decreases approximately in z z( 1)/ times [8].

In the Ising model framework, the random interaction fields’
method allows us to determine the distribution function, with para-
meters calculated by the spin interaction law (or the magnetic moments
of particles, clusters, and grains). This approach has advantages over
traditional ones since it allows us to connect possible phase transitions
with the concentration of exchange-interacting atoms (ions) and cal-
culate critical concentrations. Simultaneously applying cluster methods
and the random interaction fields’ method enables a more accurate
calculation of the phase transition conditions.

For example, we consider the association of Oguchi’s method and
the random interaction fields’ method to study the properties of ferro-
magnetic materials.

2. Random interaction fields’ method

In a random distribution of exchange-interacting ions in the crystal
lattice, the distribution function of the random fields of the exchange
interaction has the form [6]:

=W H
B

H H
B

( ) 1 exp [ ( ) ] .0
2

2 (1)

The atom creating a molecular field H (ferromagnetic atoms) is as-
sumed to have a random coordinate for amorphous magnetic material
or a random lattice site. A magnetic moment also has a random inter-
action. Moments of the distribution function are defined as

=H p ,
n

n0
(2)

=B p p2 [1 ( ) ] ,
n

n
2 2 2

(3)

where n describes the law of interaction among particles, is the re-
lative probability of the spin being up, is the relative probability of
the spin being down, and p is the concentration of the magnetic parti-
cles. The mean magnetization is defined as
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=M mH
KT

W H dHtanh ( ) ,
(4)

where =M ¯ ¯. Here … denotes thermodynamic and configura-
tional averaging, …̄ denotes thermodynamic averaging, m is the mag-
netic moment per ion, k is the Boltzmann constant, and T is the tem-
perature. The angle brackets will be omitted.

After integrating the expression, the magnetization can be de-
termined as

= +M
B

m H M H
kT

dH1
2

tanh ( ) .
B

B 0

(5)

Small M magnetization can be represented in the form

=
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As follows from Eq. (6) a spontaneous magnetic moment can arise
only under the condition

>H
B

mB
kT

tanh 1.0
(7)

Accordingly, the Curie point is determined from the equation

=H
B

mB
kT

tanh 1.
c

0

(8)

Fields and temperatures are usually measured in energy units
= = =B mB H mH T kT, ,0 0 . Omitting the primes, we obtain:

=H
B

B
T

tanh 1.
c

0

(9)

The theory of the molecular field (TMF) is obtained from the lim-
iting transition W H H mH( ) ( )0 , where x( ) is the Dirac delta
function. Thus,

=M
MpH

T
tanh .0

(10)

In the direct exchange = =J H zJ J, ,n 0 is the exchange integral. At
= =J T pz1, c , where z is the number of the nearest neighbors.

Function W H( ) can be replaced by “rectangular” function W x( ) to
simplify the computation:

=
> <

W x
B x B x
B x B( )

0, ,
, .B

1
2

Obviously, W x( ) also tends to the Dirac delta function at B 0.
In [6], examples of the numerical solution of the equation for M are

given by the exact and approximate functions. Thus, near the phase
transition points, where M and B are small, the error in the calculations
is negligible. Additional arguments favoring such a possible substitution
can be considered as an estimate of the critical density pc corresponding
to the percolation threshold, which is easy to obtain for the direct ex-
change interaction.

We note immediately that for concentration =p 1 and the square
lattice in Eq. (8), the Curie point is =T 3.2c , which is closer to the exact
solutions than in the conventional TMP. Since tanh 1B

Tc
, a sponta-

neous magnetic moment can arise when the condition > 1H
B

0 is sa-
tisfied. Then for direct exchange, it means (see the definition of H0 and
B2 under the condition M 1):

> =p p
z
2 .c (11)

The values of the critical concentration pc turned out to be close to
the percolation thresholds, so in the direct exchange, naturally, ferro-
magnetic ordering is possible only when a so-called flowing cluster

appears. Using the critical value =H B/ 10 , determining the critical
concentrations for other exchange interaction laws is possible, for ex-
ample, the RKKY.[9].

3. The curie point: Oguchi’s method and random interaction
fields’ method

In Oguchi’s method, a pair of exchange-interacting atoms is placed
in the effective field H, created by means z( 1) neighbors, the partition
function has the form:

= + + + =

+

S H
T

H
T T T

H
T

T

exp 1 2 exp 1 2 2exp 1 2exp 1 cosh 2

2exp 1 ,
(12)

and the magnetic moment is determined as

=
+

M
sinh

cosh exp
,

H
T

H
T T

2

2 2
(13)

where =H z M( 1) .
The Curie point can be obtained by requiring the derivative of the

right-hand side of Eq. (13) to M be equal to one. Thus, =T 3.78c .
Using the random interaction fields’ method, the relative magnetic

moment can be represented as

=
+
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H
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where = =W H e B z( ) , 2( 1)B
1

H MH
B

( 0)2
2 .

Replacing W H( ) by the “rectangular” function [6] and passing to
the new coordinates = +H H MH0, we obtain
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+

+
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M
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Considering Eq. (15) near Tc for small M, we have
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The Curie point is found from the equation

+
=H
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At =z 4, the Curie point is =T 2.75c . If we do not use the approxima-
tions adopted above and determine the distribution function as the
exact binomial function for =z 4 (in our case, =z 1 3)

= +

=
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2
2 3 ,
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3
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3
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where C is the binomial coefficient, then the Curie point is determined
from Equation:
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+=
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whose solution is =T 2.74c . The use of the binomial function, even for
such a small value as =z 3, does not give a noticeable improvement in
the result

This result provides a more accurate value of the Curie temperature
than in the Bethe-Peierls method, wherein the Curie point is
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=T 2.89c .The exact Curie temperature obtained by Onsager is =Tc 2.28.

4. Heat capacity: Oguchi’s method and random interaction fields’
method

In the theory of random interaction fields, the mean value of the
square of the magnetic moment is defined as

= +

= + +

M
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(20)

If >T Tc then =M 0; if <T Tc then M 0; and near the Curie point Tc
the magnitude of M is determined from Eq. (6).

Because of the expansion in a series of a value ±tanh B
T
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When Eq. (21) is substituted into Eq. (20), the second term drops
out during summation. Thus the average value of the square of the
magnetic moment is defined as
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The energy per atom is =U zM /22 .
The heat capacity “from the left” of the Curie point has the form:
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After this the heat capacity can be defined as:
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In the direct exchange = =B pz H p z2 ,2
0
2 2 2 near =T Tc. At

= =p z1, 4,and =T 3.2c , the heat capacity at the Curie point is
=C 1.21 .
The heat capacity “to the right” from the Curie point is determined

by the right-hand term of Eq. (24)
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2
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In the direct exchange at the Curie point, the heat capacity is =C 0.22 .
Thus, at a point =T Tc, the heat capacity experiences a jump rela-

tively smaller than in the Bragg-Williams approximation, but a nonzero
heat capacity is associated with random fluctuations of the effective
field of the exchange interaction.

In Oguchi’s method, the thermodynamically averaged internal en-
ergy U per atom is determined by the formula

=
+( )U
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2
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The configuration averaging by the function W H( ) allows us to
calculate U by the formula
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Determining the heat capacity “from the left” of the Curie point,
differentiating the expression for U with respect to temperature, and
using Eq. (17) are necessary. At =T 2.75, the heat capacity “to the left”
of the Curie point is =C 3.981 . For =M 0, the heat capacity “to the
right” of the Curie point is =C 0.242 .? Thus, the heat capacity experi-
ences a stronger jump at =T Tc than in the random interaction field
approximation applied to an isolated atom.

5. Conclusion

Preserving the relative simplicity of the molecular field theory, the
random interaction fields’ method combined with Oguchi’s correlations
provides a closer estimate of the Curie point and specific heat dis-
continuity than the Bethe-Peierls and Bragg-Williams methods.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
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