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Unusual optical properties of structured metal sur-
faces arise from plasmon resonances and interactions
through surface plasmon-polariton waves (SPPs).
Predicting these properties is generally challenging.
However, simplifying the problem using harmonic
Fourier components allows one to decompose the ini-
tial problem down to the problem of SPP generation
by the finite-length sinusoidal grating. In this work,
we propose an analytical method for the description
of SPP generation with such gratings by utilising
methods from the waveguide theory based on the
Lorentz reciprocity theorem.

1 Introduction

Plasmonics is a rapidly growing field with sig-
nificant contributions to scientific areas such as
biosensing [1] and Raman spectroscopy [2]. One of
the challenges in plasmonics is the efficient gener-
ation of surface plasmon polaritons (SPPs). Meth-
ods used to generate SPPs on flat metal surfaces
have limited ability to control and manipulate the
properties of SPPs [3]. Structured substrates have
emerged as a promising approach to overcome these
limitations.

Several analytical and numerical methods have
been proposed to model the excitation of SPPs
on structured substrates [3] or in the thin metal-
lic films [4]. However, these methods often involve
solving complex equations that require significant
computational resources or sophisticated analyti-
cal techniques, limiting their practical applicability.
Therefore, there is a need for simpler methods to
model SPP generation.

In this work, we continue to develop the analyt-
ical model for the SPP generation [5, 6] and pro-

pose a simple and efficient approach that utilizes
mode decomposition and the Lorentz reciprocity
theorem [7] to describe the generation of SPPs on
structured substrates. The proposed technique has
the potential to contribute to the development of
new SPP-based devices.

2 Results and discussion

In this paper, we aim to solve the following prob-
lem. Let us consider a sinusoidal grating of length
z0, period Λ and amplitude x0 under the normal
incidence of the plane electromagnetic wave (see
Figure 1; the vacuum wavelength is λ). After the
corrugated area, there is a planar semi-infinite in-
terface. Hereinafter, the grating and the substrate
are considered to be made of gold with the permit-
tivity taken from [8].

According to the approach well-established in the
waveguide theory, we are going to calculate the SPP
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Figure 1: A sketch of the problem.
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amplitude according to the relation [9]

aSPP = − 1

4N0

∫
(V )

(eSPP · J) e−ikSPPzdV, (1)

where eSPP = eSPP
x nx + eSPP

z nz is the SPP
mode’s electric field with eSPP

z (x) = e0e
−γ(x)|x|

and eSPP
x (x) = e0

√
εMe

εS(x)e
−γ(x)|x|; e0 = −h0

ρV√
εMe+1

;

ρV =
√

µ0

ε0
; hSPP = hSPP

y ny is the SPP mode’s

magnetic field with hSPP
y = h0e

−γ(x)|x|;

εS(x) =

{
1, x > 0,

εMe, x < 0;
γ(x) =

{
γVac, x > 0,

γMe, x < 0;

h0 is an arbitrary constant of dimension A/m;
N0 = 1

2

∣∣∫
(S)

eSPP × hSPP · nz dS
∣∣; γVac = k i√

εMe+1
;

γMe = −k iεMe√
εMe+1

; kSPP = knSPP; nSPP =
√
εMe√
εMe+1

;

nx, ny are the unit vectors in the X and Y
directions respectively; J is the excitation current
density distribution.

The only question here is the proper determina-
tion of the excitation current density J. We will
choose it as in [9]

J = −ik(ε(x, z)− εs(x))
E

ρV
, (2)

where E is the electric field amplitude; ε(x, z) and
εs(x) set the permittivity as functions of spatial co-
ordinates for the modified and the initial flat sur-
faces respectively; k = 2π/λ.

A straightforward choice of E as a superposition
of the background (without the grating) and the
overall scattered field specifies the self-consistent
problem since both the left- and the right-hand
sides of (2) depend on the SPP coefficient aSPP.
We are going to simplify our problem assuming the
grating amplitude smaller than the wavelength λ
and the grating period Λ.

2.1 Description of SPP generation within the
Born approximation

One way of simplification of (1) stems from replac-
ing the full electric field E in (2) by such a field that
does not include the SPP contribution. According
to this suggestion, let us set the electric field as
follows:

E = E0 insnz

{
eikx + re−ikx, x > 0,

(1 + r)eγ
0
Mex, x < 0,
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Figure 2: Comparison of the analytically cal-
culated Z component of the electric field at
the end of the grating and the results of the
full-wave numerical simulations. The grating
amplitude is 10 nm; the solid lines represent
the analytical results while the dotted ones
correspond to the numerical simulations. The
wavelength λ = 800 μm.

where E0 ins is the incident wave field amplitude,
r =

(
1−√εMe

)
/
(
1 +
√
εMe

)
the reflection coef-

ficient from the flat metal surface, and γ0
Me =

ik
√
εMe. For the sake of simplicity, only the linear

term of the power series by the small parameter kx0

is considered.

Figure 2 shows the results of the electric field cal-
culations right after the grating for different grat-
ing lengths and grating periods. It demonstrates
the essential properties of the desired solution: if
the grating is resonant (i.e., the SPP wavelength
and the grating period coincide), the electric field
is maximal; while the discrepancy between the
grating period and the SPP wavelength is getting
larger, the generation efficiency drops and the pic-
ture of beats appears.

Despite these advantages, this figure also high-
lights a limitation of the described approach. In-
deed, the analytical results agree well with the nu-
merical calculations for the short or non-resonant
gratings. Meanwhile, the divergence of the pre-
dicted dependence with the calculated one is fairly
high for the case of long (z0 > 50 μm) resonant
gratings.

Figure 3 suggests another issue with the found
solution. Comparison of the analytically calculated
amplitude of the electric field produced by the reso-
nant grating with the numerical one pronounces the
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Figure 3: Dependence of the normalized Z
component of the electric field near the end
of the grating on the grating amplitude x0 for
the resonant SPP excitation. The dashed line
shows the analytical dependence; the dots are
for numerical calculations. For both cases, the
total length of the grating is kept constant and
equal to 400.5 grating periods (≈ 313 μm).

significant disagreement between two curves albeit
the grating amplitude keeps being relatively small.

The roots of these problems lie in the Born ap-
proximation’s limitations. Indeed, one can expect a
satisfactory agreement between the exact solution
and the approximation as long as the SPP-related
and other scattering terms can be treated as a small
perturbation. This assumption is no longer true if
the SPP impact is not negligible (as for the long res-
onant gratings) or when the real electric field is es-
sentially non-zero while the background field expo-
nentially decays (if the grating amplitude is larger
than the penetration depth in metal). Therefore,
we need to correct this approach to mitigate these
effects.

2.2 Description of SPP generation within the cor-
rected Born approximation

First, let us suggest the simpler yet more powerful
substitution for E in (2). Here we use the constant
electric field taken at the position of the planar in-
terface without the grating:

E = E0 ins(1 + r)nz.

It must describe the SPP generation by the gratings
with larger grating amplitudes more accurately as
it does not decay exponentially for z < 0.
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Figure 4: Dependence of the SPP amplitude
on the grating length z0 with variation of
the latter’s period. The height of the grat-
ing profile x0 = 5 nm. The wavelength of ra-
diation incident on the grating is λ = 0.8 μm
(λSPP = 0.783 μm). The solid curves are the
results of analytical calculations, the colored
dots are the numerical results.

One more correction aims to account for the SPP
radiative losses, which are more pronounced for
long gratings. In the linear approximation, the ra-
diative losses must be proportional to the SPP elec-
tric field:

Elkg = κE0z.

The symmetry of the problem allows one to de-
termine the value of the parameter κ as in [10].

Ultimately, the Z component of the electric field
at the end of the grating reads as

E0z = iγE
1

∆k + i(kI + γrad)

×
(
1− e−z0(kI+γrad)+i∆kz0

)
E0 ins,

where

γE = γ0

(
x0 − i

2

3π
kx2

0

√
εMe + 1

)
with

γ0 = −i(εMe − 1) (1 + r)
k2

SPP

2εMe

∣∣∣∣ ε
3/2
Me

ε2
Me − 1

∣∣∣∣;
the radiation decay

γrad =
|κ|2

2N1
=
N1

2
|γE |2
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with

N1 =
1

2k

∣∣∣∣(εMe + 1)
ε2

Me − 1

ε
3/2
Me

∣∣∣∣;
and

kSPP =
(2π

Λ
+ ∆k

)
+ ikI .

Figure 4 confirms the validity of the suggested
corrections. The curves still exhibit monotonic
growth until it saturates for the resonant excitation,
and the non-resonant curves show decreased gen-
eration efficiency with the presence of oscillations.
However, the degree of divergence between the
analytical and numerical dependencies is smaller
compared to the one for the Born approximation.
Therefore, while the found solution retains the ob-
tained advantages of the Born approximation, it
introduces a finer agreement for the broader range
of grating lengths and periods.

3 Conclusion

The proposed approach provides a simple and effi-
cient way to describe the SPP generation by finite-
length grating. We illustrated this method by cal-
culating the SPP generation with the sinusoidal
corrugation. While any profiled surface can be de-
composed to the set of sinusoidally profiled surfaces
and incident fields allow one to represent them as a
set of plane waves, our results are useful for mod-
elling excitation of surface waves with various con-
figurations of the incident fields and metasurfaces.
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