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Abstract: Since surface plasmon polaritons (SPPs) are surface waves, they cannot be excited by an
incident plane wave, because free-space photons do not possess a sufficient in-plane momentum.
Phase matching between the incident light and SPP can be achieved using a high-refractive-index
prism, grating, or nanoantennas. In this work, we found an expression for the amplitude of SPP
excited by an arbitrary 3D current distribution placed near a metal interface. The developed method
is based on the well-known technique used in waveguide theory that enables finding the amplitudes
of waveguide modes excited by the external currents. It reduces the SPP excitation problem to
the summation of the set of emitters. As a particular example, we considered a spherical dipole
nanoantenna on a metal substrate illuminated by a normally incident plane wave. The analytical
calculations were in good agreement with the full-wave numerical simulations.

Keywords: surface plasmon polaritons; SPP; nanoantenna; SPP excitation

1. Introduction

Surface plasmon polaritons (SPPs) are the phenomenon of a wave propagating along
the interface between a metal or highly doped semiconductor and a dielectric, formed due
to the interaction between the collective excitation of the electrons and the electromagnetic
wave. First observed by R. Wood in 1901 [1], the anomalies in the reflectance spectra
were explained in terms of surface waves by U. Fano in 1941 [2]. However, the origin of
these surface waves was explained later by R. Ritchie in 1957 [3]. The localization of the
SPP energy near the interface, which becomes extremely strong at the resonant frequency,
makes SPPs promising for miniaturization of optical integrated circuits. For instance, the
use of plasmonic waveguides enabled the squeeze optical guided modes at telecommu-
nication frequencies down to the nanoscale [4,5]. Other applications include subwave-
length imaging [6] and surface-plasmon-assisted commercially available quantum cascade
lasers [7,8]. Tight spatial localization of light in plasmonic structures is accompanied
by a large amplification of the incident field, which opens up exciting opportunities for
biosensing [9–11], enhancement of light–matter interaction [12,13], nonlinear optics [14–16],
and Raman spectroscopy [17,18]. The use of plasmonic films improved the efficiency of
GaN-based LEDs [19–21]. Plasmon excitations have been observed and studied in both
localized and extended structures.

One of the most promising applications of SPP is biosensing. Due to the strong localiza-
tion at the metal interfaces, SPP is extremely sensitive to thin films of analytes or molecules
attached to the interface. The refractive-index sensitivity reaches 106–107 nm/RIU [10].
SPR-based biosensors allow the label-free analysis of biomolecules’ interaction, which pro-
vides realtime measurement of the analyte concentration and kinetics, and thermodynamic
binding parameters. SPP has been used in interaction studies and screening of various of
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analytes, including nucleic acids, proteins, carbohydrates, whole cells and receptors, which
has led to applications in such fields as clinical diagnostics, the pharmaceutical industry,
and military defense. For a more comprehensive discussion of the properties of SPPs, we
refer the reader, for example, to the following monographs and reviews: [10,22–27].

SPP is a surface wave and, therefore, cannot be excited from free space by a plane
wave because simultaneous conservation of energy and in-plane momentum is impossible
in this case. Many techniques enable such phase matching. They include diffraction
gratings [28], frustrated total internal reflections methods in the Otto or Kretschmann
configurations [29,30] or use of the defects (holes, notches, grooves, etc.) that break in-
plane translation symmetry [31–33]. Another opportunity for the excitation of SPPs is the
use of dielectric or plasmonic nanoantennas [34–37]. The SPP excitation efficiency in this
case can be significantly enhanced due to the nanoantennas’ resonances [38–40]. Moreover,
the control over the multipole resonances of the nanoantennas allows dynamic control over
the directivity of the excited SPPs [41]. This effect can be used for on-chip multiplexing of
SPPs [42].

The problem of a plane wave scattering placed on a small particle on a substrate that
supports surface wave propagation can be solved analytically using the dyadic Green’s
functions [43–46]. Although this method is consistent with the experimental results and full-
wave numerical simulations, it is quite tedious as it requires the calculation of Sommerfeld
integrals. The corresponding calculations are performed in Appendix A.

Another approach based on the multipole decomposition was suggested [47] and sub-
sequently used for calculation of the light scattering on spherical silicon nanoparticles [48].
This procedure allows taking into consideration arbitrary electric field distribution. Never-
theless, the suggested method is applicable only for far-field calculations, and it neglects
the imaginary part of the substrate permittivity. Moreover, this approach utilizes the inte-
gration of the Green’s function using a decomposition over the basis of spherical functions.
This technique also implies a number of technical difficulties.

In [49] we presented a simple alternative approach based on the reciprocity theorem
to calculate the SPPs’ contribution to the total field scattered by an infinite rod of small
radius on a metal substrate. This work is intended to extend the results obtained in [33]
for a full 3D geometry. The modified method enabled calculation of the SPP amplitude
when excited by an arbitrary 3D electric current distribution. It allowed us to bypass the
calculation of complex integrals and reduce the problem to summation over a set of sources
(in the case of a finite set of dipoles) or integration over all the external currents. Following
the principles established in [33], our approach was based on the orthogonality of modes
and the reciprocity theorem. To illustrate this method, we considered a single spherical
nanoantenna over a metal surface illuminated by a normally incident plane wave. First,
we derived and illustrated the analytical results and then we validated them by full-wave
numerical simulations in COMSOL Multiphysics software.

2. Methodology

Let us consider a nanoantenna: a small-radius sphere (a . λ, where λ is the wavelength
of light in the visible spectral range) made of a noble metal (ε = εMe) located in a vacuum
(ε = 1) at a distance x0 above the surface of a metal film and the gap between the sphere
and the film is d = x0 − a. The film is assumed to be made of the same metal as the sphere,
and it is sufficiently thick (thicker than the skin depth, which is about 15 nm for noble
metals in the visible and near infrared spectral regions), and thus, that SPPs are excited
only on its upper surface. The nanoantenna is illuminated by a linearly polarized plane
wave incident vertically from above. Under this wave, the nanoantenna is polarized and
acquires a dipole moment (DM) pA, which we assume to be parallel to the Z axis on the
film surface (Figure 1).
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Figure 1. Excitation of the SPP wave on a metal film by a spherical nanoantenna. (a) Side view: the nanoantenna is affected 

by the field of the incident and reflected waves and the field due to the emission from the nanoantenna itself, the latter 

giving rise to the surface dressing effect (in the case of a perfectly conducting surface, it can be described as an impact of 

the mirror image shown dashed). (b) Top view: antenna and an elementary SPP wave excited by it on the surface of a 

metal film. (c) Amplitude of the continuous component of the electric field at 𝑥 = 0 (normalized to the field at 𝑟 = 0; λ = 

550 nm, a = 50 nm, d = 10 nm). 

The spatial distribution of the SPP wave excited on the film surface  𝑬𝑺𝑷𝑷 is illus-

trated in Figure 1c, which shows the pattern of its interference with the exciting field 

𝑬0calculated with Equations (2)–(4). The results of calculating the SPP excitation efficiency 

ASPP are presented in Figures 2–4 illustrating the effect of the incident wavelength (Figure 

2), of the radius of the nanoantenna (Figure 3), and of the gap between the nanoantenna 

and the film (Figure 4). All calculations were performed assuming that both the nanoan-

tenna and the film were made of gold, whose complex permittivity data were taken from 

the CRC reference book [54]. The lower limit of the spectral range for the calculations (λ1 

= 490 nm) was chosen so that 𝑅𝑒(𝜀𝑀𝑒(𝜆1)) < −1 was fulfilled in the entire spectral range 

of interest, it was the condition for SPP existence at the gold-vacuum boundary as a 

guided mode [55]. The upper limit of λ2 = 700 nm was set to keep the calculation range in 

the visible or, at most, in the near-infrared region. Note also that the results in Figures 2 

and 3 were obtained with a gap of d = 10 nm between the nanoantenna and the film. This 

was to minimize the effect of higher-order multipoles, which come into play at smaller 

gaps. 

Figure 1. Excitation of the SPP wave on a metal film by a spherical nanoantenna. (a) Side view:
the nanoantenna is affected by the field of the incident and reflected waves and the field due to
the emission from the nanoantenna itself, the latter giving rise to the surface dressing effect (in the
case of a perfectly conducting surface, it can be described as an impact of the mirror image shown
dashed). (b) Top view: antenna and an elementary SPP wave excited by it on the surface of a metal
film. (c) Amplitude of the continuous component of the electric field at x = 0 (normalized to the field
at r = 0; λ = 550 nm, a = 50 nm, d = 10 nm).

We can represent the cylindrical surface plasmon-polariton wave excited by the
nanoantenna as a set of plane waves propagating over the metal surface in all possi-
ble directions from the center of excitation, i.e., from the point in the ZOY plane just below
the source. This approach is equivalent to the well-known method of decomposing an
arbitrary wave into a spectrum of plane waves [50]. An alternative treatment using a
decomposition over a set of cylindrical functions is provided in Appendix B.

Each plane SPP wave representing an elementary component of this spectrum is the
same TM mode as in the 2D case [51], but now it can propagate in any direction in the
ZOY plane. The electric and magnetic fields of this elementary SPP wave are given by the
following expressions:

e = e0eikSPP(z cos θ+y sin θ)e−γ|x|, h = h0eikSPP(z cos θ+y sin θ)e−γ|x|), where e0 = (e0xnx + e0rnr),
h0 = h0nθ ; nx, nr, nθ are the basis vectors in cylindrical coordinates (Figure 1), ε = ε(x) ={

1, x ≥ 0
εMe, x < 0

e0x = −h0kSPP(ωε0ε)−1, e0r = ih0γD(ωε0)
−1, γ = γ(x) =

{
γD, x ≥ 0
γMe, x < 0

,

kSPP = k0(εMe/(εMe + 1))1/2 is the propagation constant of the elementary SPP wave,
γD = ik0(εMe + 1)−1/2, γMe = ik0εMe(εMe + 1)−1/2, k0 = ω/c, and h0 is an arbitrary
constant with A/m units (hereinafter, the factor e−iωt is implied but not written explicitly;
for simplicity of formulae, we will also omit the x-dependence of ε and γ).
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To calculate the spectral density of the plane wave decomposition of the entire surface
plasmon-polariton wave excited by the nanoantenna, we used an expression derived from
the non-conjugate reciprocity theorem [52]:

da
dθ

= − 1
4NC

1
λSPP

∫
V

e0JeikSPP(z cos θ+y sin θ)e−γ|x|dV (1)

where NC = 1
2 |
∫ ∞
−∞(e0 × h0) · nrdx| is the normalization of an elementary SPP wave;

λSPP = 2π/kSPP is the SPP wavelength, J is the current density in the nanoantenna,
and V is the source volume. When deriving expression (1), we used the same approach as
in [52], where the amplitudes of dielectric waveguides’ modes were calculated using the
reciprocity theorem. However, since this approach implies no restrictions on the dielectric
material conductivity, it can be applied to plasmonic waveguides as well.

If we assume that the radius of the sphere is infinitely small for simplicity, then the
current density can be expressed as J = iωpAδ(x− x0)δ(z)δ(y). Equation (1) can then be

integrated to yield da
dθ = A cos θ, where A = pA

γDωkSPP
2πa0

∣∣∣∣ ε3/2
Me

ε2
Me−1

∣∣∣∣ exp(−γDx0). By integrating

the contributions of all the elementary SPP waves diverging from the nanoantenna in the
form EΣ =

∫ π
−π

da
dθ e0 · eiβ(z cos θ+y sin θ)e−γ|x|dθ, we arrive at the following formula for the

electric field of the total excited SPP wave: EΣ = EΣrnr + EΣαnθ + EΣxnx, where EΣr =
e0r ASPPπ(J0(kSPPr)− J2(kSPPr))e−γ|x| cos θ, EΣθ = −e0r ASPPπ(J0(kSPPr) + J2(kSPPr))
e−γ|x| sin θ, EΣx = 2iASPPπ J1(kSPPr)e−γ|x| cos θ. These expressions correspond to the com-
ponents of a standing cylindrical wave. The reason for such a wave arising is that when the
integration variable ranges from −π to π in the expression for EΣ, each elementary wave
propagated forward is combined with that travelling in the opposite direction. Separating
from the total field the component corresponding to the wave diverging from the center
and discarding the converging one, we obtain the final expressions for the components of
the total SPP wave excited by the nanoantenna ESPP:

ESPP
r = iASPPe−γ(x)|x|

(
H(1)

0 (kSPPr)− H(1)
2 (kSPPr)

)
cos θ

ESPP
θ = −iASPPe−γ(x)|x|

(
H(1)

0 (kSPPr) + H(1)
2 (kSPPr)

)
sin θ (2)

ESPP
x = −2ASPPε

1
2
Meε(x)−1e−γ(x)|x|H(1)

1 (kSPPr) cos θ

where H(1)
m are m-th order Hankel functions of the first kind, and the following factor

independent of the coordinates:

ASPP = pAkSPPγ2
D(4ε0)

−1
(

ε3/2
Me /

(
ε2

Me − 1
))

exp(−γDx0) (3)

characterizes the excitation efficiency of the cylindrical surface plasmon-polariton wave
by a dipole source. Using the asymptotics for the Hankel functions of a large argument,
it is easy to show that the strength of the field component ESPP

θ rapidly reduces to zero
with increasing r, and at a distance of ∼2–3λSPP from the center of excitation, the total SPP
wave has only the radial and vertical components.

If it were not for the effect of the substrate (i.e., surface dressing effect), then in the
framework of the electrostatic approximation, which is valid for a small-radius nanoan-
tenna (a << λ), the magnitude of the dipole moment pA in Equation (3) would not differ
from the dipole moment of a sphere in vacuum p0 = a3ε0(εMe − 1)E0(x0)/(εMe + 1), po-
larized by the field of the incident wave and the wave reflected from the metal film surface:
E0(x) = E0i

(
e−ikx + Reikx

)
, where R =

(
1−√εMe

)
/
(
1 +
√

εMe
)

is the Fresnel reflection
coefficient of the metal surface. To clarify the so-called surface dressing effect [43], let
us assume for simplicity that the separated polarization charges in the sphere are point
charges. Both these charges produce image charges in the metal film, which generate an
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inhomogeneous electric field (Figure 1). This induces both an additional dipole moment
p1 = qp0, where q = εMe−1

εMe+2
εMe−1
εMe+1

a3

8(a+d)3 , and higher-order multipole moments of higher

orders in the nanoantenna. The dipole moment p1 creates additional polarization charges
in the nanoantenna, which, in turn, produce image charges in the film and induce an
additional contribution to the dipole moment of the nanoantenna, and so on up to infinity.
By summing up the resulting geometric progression, one can calculate a correction factor
to p0 taking into account the effect of the substrate: µSDE = (1− q)−1. Another correction

factor [53] µa =
(

1− 3
5

εMe−2
εMe+2 (ka)2 − i 2

3
εMe−1
εMe+2 (ka)3

)−1
enables extending the validity of the

electrostatic approximation for a sphere in vacuum making it applicable for relatively large
spheres with radii corresponding to ka ∼ 1. Using both the correction factors, the dipole
moment of the nanoantenna can be calculated as

pA = µSDEµap0 (4)

We note that the above expression is inaccurate for d � a, since we are neglecting
the image multipoles of higher orders for simplicity, which do affect the magnitude of
the dipole moment of the nanoantenna at such small gaps between the sphere and the
metal surface.

3. Results and Discussion

The spatial distribution of the SPP wave excited on the film surface ESPP is illustrated
in Figure 1c, which shows the pattern of its interference with the exciting field E0 calculated
with Equations (2)–(4). The results of calculating the SPP excitation efficiency ASPP are
presented in Figures 2–4 illustrating the effect of the incident wavelength (Figure 2), of the
radius of the nanoantenna (Figure 3), and of the gap between the nanoantenna and the
film (Figure 4). All calculations were performed assuming that both the nanoantenna and
the film were made of gold, whose complex permittivity data were taken from the CRC
reference book [54]. The lower limit of the spectral range for the calculations (λ1 = 490 nm)
was chosen so that Re(εMe(λ1)) < −1 was fulfilled in the entire spectral range of interest,
it was the condition for SPP existence at the gold-vacuum boundary as a guided mode [55].
The upper limit of λ2 = 700 nm was set to keep the calculation range in the visible or, at
most, in the near-infrared region. Note also that the results in Figures 2 and 3 were obtained
with a gap of d = 10 nm between the nanoantenna and the film. This was to minimize the
effect of higher-order multipoles, which come into play at smaller gaps.
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Figure 2. The efficiency (a) and amplitude at a distance of 8 µm from the excitation center (b) of the
SPP wave vs. the incident wavelength, at d = 10 nm. Solid curves and dots are the results of the
analytical and numerical calculations, respectively.
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analytical results using the exact value of the dipole moment of the sphere in a vacuum.
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Figure 4. Dependences of the SPP excitation efficiency on the width of the gap between the nanoan-
tenna and the film at a = 30 nm. Solid curves are the results of analytical calculations; dots represent
numerical data.

As can be seen from Figure 2a, the calculated dependences ASPP(λ) showed the maxi-
mum efficiency of SPP excitation, as expected, near the dipole resonance wavelength λDR of
the gold sphere (λDR = 515 nm for the sphere with a radius of 30 nm and λDR = 516 nm-for
spheres with a slightly larger radius of 40 nm). It should be noted that the attenuation of
the SPP wave at wavelengths close to λDR was also very large [51]. The consequences of
this are illustrated by Figure 2b, which represents the amplitude of the radial component
of the SPP wave ESPP

r (λ), calculated using expression (2) at a distance of 8 µm from the
excitation center (at θ = 0, x = 0). As one can see, for λ ~ λDR the SPP amplitude became
vanishingly small at this distance, which shifted the maximum of the amplitude to the red
part of the spectrum, where the SPP attenuation was much smaller.

In Figure 3, we plotted the calculated dependences of ASPP on the nanoantenna
radius solid curves. As one can see, the dependences first exhibited a growth according to
the a3 law, due to the corresponding increase in the nanoantenna dipole moment in the
quasi-static approximation. The growth then slowed down and finally ceased at a ~ 0.15λ
because of the influence of the correction factor µa in expression 4. Prediction of the further
variation of ASPP with a goes beyond our analytical approach. The main reason was not
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the limited applicability of the correction factor µa (this could be amended by replacing
the approximate value of the dipole moment of the sphere in a vacuum with its exact
value known from the Mie theory), but it was no longer possible to neglect the effect of
image multipoles in the film when the radius of the nanoantenna significantly exceeded
the gap width d.

The effect of gap d on the efficiency of SPP excitation is illustrated by the solid curves
in Figure 4. A sharp decrease in the SPP excitation efficiency was observed in the initial
portion of the curves, which was explained by the rapid weakening of the effect of image
charges in the film on the dipole moment of the sphere, until the latter, for gaps larger than
a certain threshold value dSDE, approached the dipole moment of the sphere in a vacuum
(the correction factor µSDE in expression (4), which was responsible for this effect, rapidly
decreased with increasing d/a ratio and became almost equal to unity at a gap of 0.27a
for λ = 650 nm, 0.33a for λ = 600 nm, and 0.47a for λ = 550 nm). Figure 4 also shows that
this effect was much more pronounced at a wavelength of 550 nm than at λ = 600 nm and
λ = 650 nm. The reason was that a decreased coefficient µSDE in expression 4 was partially
compensated for by an increase in the amplitude of nanoantenna dipole moment. The
latter moved from the minimum of the interference field E0 near the metal surface up to
the maximum with increasing gap d. Calculations showed that |E0| increased faster with
distance from the metal surface at longer wavelengths making the compensation effect more
pronounced. At d > dSDE, the nanoantenna moved successively between the interference
minima and maxima of the exciting field E0 with increasing d, which explained the further
quasiperiodic character of the ASPP(d) dependence. The accompanying gradual decay of
ASPP(d) was explained by the weakening effect of the nanoantenna on free electrons near
the surface of the film, according to the law e−γD x0 , as follows from expression (3).

To verify the analytical results, the problem of SPP excitation by a spherical nanoan-
tenna was also solved numerically by the finite element method using COMSOL Mul-
tiphysics software. To simplify the calculations, the 3D geometry of the problem was
reduced to a 2D axisymmetric geometry. The model contained a single half-plane parallel
to the electric field of the incident wave and passing through the center of the nanoantenna.
This half-plane was discretized by a nonuniform mesh with sufficiently small (to achieve
convergence of numerical results) element size in the region of the gap between the metal
surface and the nanoantenna. Absorbing boundary conditions (perfectly matched layers)
were applied to the outer boundaries of the computational domain.

The calculated electromagnetic field near the nanoantenna apart from the obvious
contribution of the exciting wave field (which was easily subtracted) consisted of the
near and far field of the nanoantenna and the excited SPP wave. The amplitude of the
first two components representing an unwanted background to the SPP wave of interest
rapidly decreased with distance from the source at all wavelengths in the simulated
spectral range. The SPP wave also decayed quickly with distance from the nanoantenna at
shorter wavelengths, where it had high propagation losses. At longer wavelengths, these
losses became lower at longer wavelengths, so the SPP wave contribution dominated at
a relatively large distance from the excitation center. The numerical simulations showed
that the amplitude of the longitudinal component of the electric field amplitude on the
interface corresponded to the form r−1/2 exp(−Im(kSPP)r) at λ & 530 nm and r & 10λ.
This dependence was consistent with the asymptotic behavior of the Hankel functions in∣∣ESPP

r (r)
∣∣. That means that under the above conditions, the surface plasmon wave did in

fact dominate in the total field at the metal surface. This conclusion enabled one to extract
from the numerical simulation all the components of ESPP. The corresponding results for∣∣ESPP

r (r)
∣∣ obtained at r = 8 µm, θ = 0, x = 0, and d = 10 nm are shown by dots in Figure 2b.

They were consistent with the results of the analytical prediction. However, the agreement
was better at a = 30 nm than at a = 40 nm. This could be explained by the neglected effect of
image multipoles in the film. Considering the known law of SPP propagation, the obtained
numerical results could be used to calculate the excitation efficiency ASPP, which is shown
by dots in Figure 2a. As seen from the figure, the numerical and analytical results for
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ASPP were also in good agreement at least in the spectral range 530–700 nm, where this
comparison could be made. The SPP wave field could not be separated from the near and
radiation field of the nanoantenna in the range 490–530 nm.

The dots in Figure 3 represent the numerically calculated dependence of ASPP on
the radius of the nanoantenna at three different wavelengths and d = 10 nm. As evident
from the figure, the numerical results agreed in character with the results of the analytic
calculations, with a good quantitative agreement observed in the initial portion of the
curves, as long as the condition of validity of the dipole approximation ka << 1 strictly
held [55]. For larger a, when the parameter ka < 1 (in the case of λ = 550 nm, for example,
this corresponded to the range of about 30 to 70 nm in Figure 3), the discrepancy between
the analytical and numerical results increased, but remained within 30–40%. For ka > 1, the
discrepancy rose sharply.

To clarify the reasons for the difference in numerical and analytical results, let us
use, instead of the approximate dipole moment of the sphere in a vacuum (

∣∣∣µapsph
0

∣∣∣ in

Equation (4)), its exact value given by a1(ka)/k3, where a1(ka) is the “dipole” Mie expansion
coefficient. The corresponding analytic dependence calculated at λ = 550 nm is shown as
the dashed curve in Figure 3. At ka . 1, the discrepancy with the numerical results remains
the same and slightly decreases at ka > 1. Therefore, the reason for the discrepancy is only
to a small extent related to the inaccuracy of calculating the “vacuum” dipole moment of
the sphere, and is mainly due to the effect of the substrate. It is also easy to verify that the
correction factor µSDE that takes into account the “surface dressing effect” in the dipole
approximation improved significantly the agreement between the analytical and numerical
results. This indicated that the source of the mismatch was the effect of higher order
multipole moments, which was not taken into account in the analytical calculations and
which became increasingly significant as the radius of the sphere increased in comparison
with the width of the gap.

The numerically calculated dependences ASPP(d) obtained for a = 30 nm at three
different wavelengths are shown with dots in Figure 4. As seen from the figure for very
small gaps d, the numerical results at λ = 550 nm and λ = 600 nm indicated, in contrast to the
analytic curves, a very rapid increase in the magnitude of ASPP (while the gap was smaller
than, respectively, ~3 nm and ~1.5 nm). This difference could also be explained by the effect
of the images of higher order multipoles arising in the film, which was very “short-range”,
and therefore manifested itself only at small (relative to the radius of the sphere) gaps.
It should also be taken into account that the excitation efficiency of local plasmon modes of
higher orders in the nanoantenna (quadrupole, octopole, etc.), as a rule, dropped sharply
with an increase in the wavelength/sphere radius ratio [56]. The influence of the multipoles
was, therefore, readily observed for the short-wavelength (λ = 550 nm and λ = 600 nm)
dependences and was much less noticeable for the longer-wavelength dependence at
λ = 650 nm. The numerical dependences then demonstrated a sharp decrease in the SPP
excitation efficiency as the gap increased up to the value dSDE, which was the same as that
for the analytical curves. The numerical results, however, exhibited larger values of ASPP
than the analytical ones in this region, which could also be explained by neglecting higher
order multipoles in the analytic calculations. At d > dSDE, as can be seen from the figure,
the numerical and analytical dependences were in good agreement.

4. Conclusions

Thus, we have shown that the amplitude of the SPP wave excited by a spherical
nanoantenna on a plane metal-dielectric interface can be analytically calculated in full
3D geometry with the same method as that used in the waveguide theory for computing
guided-mode amplitudes in the presence of current sources. The method yielded a fair
agreement with the results of the rigorous numerical simulation when the dipole approxi-
mation remained applicable for the nanoantenna. The developed method was shown to
provide reasonably accurate results for spherical gold nanoantennas with radii of up to
~70 nm. The presented approach did not require the calculation of Sommerfeld integrals
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and could be easily extended to the case of an arbitrary current density distribution. We be-
lieve that our method can find wide application in modeling diverse phenomena involving
SPP excitation.
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Appendix A

The total electric field created by the oscillating point dipole p located at point
r = r0 = {x0, y0, z0} in free space can be expressed via the Green’s function Ĝ0 [55] as

Ed = ω2µ0Ĝ0(r, r0)p, (A1)

where ω is the angular frequency, µ0 is the vacuum permeability, and Ĝ0 is given by
the relations

Ĝ0 =
i

8π2

x ∞

−∞
M̂ei(kx |x−x0|+ky(y−y0)+kz(z−z0))dkydkz, (A2)

M̂ =
1

k2
0kx1


k2 − k2

x1 ∓kx1ky ∓kx1kz

∓kx1ky k2 − k2
y −kykz

∓kx1kz −kykz k2 − k2
z

. (A3)

k = ω/c in the equation above is the vacuum wavenumber, the upper signs correspond to
the area with x > x0, and the lower signs correspond to the area with x < x0.

Below, we focus on the X component of the electric field only. Assuming the Z oriented
dipole p = pAez = {0, 0, pA} located at the point r0 = {x0, 0, 0}, one can express the X
component of the electric field in the area with x < x0 of free space as

Ed
x = ω2µ0

i
8π2k2

0
pA

x +∞

−∞
kzei(−kx1(x−x0)+kyy+kzz)dkydkz. (A4)

Therefore, the X component of the reflected field, which is the only term containing
the SPP field can be written as

Ed−r
x = ω2µ0

i
8π2k2

0
pA

x +∞

−∞
kzR

(
ky, kz

)
eikx1x0 ei(kx1x+kyy+kzz)dkydkz, (A5)

where
R
(
ky, kz

)
=

ε1kx2 − ε2kx1

ε1kx2 + ε2kx1
(A6)

is the Fresnel reflection coefficient at the air/medium interface, index 1 corresponds to the
upper half-space, index 2 to the lower half-space, ε is the permittivity of the media, and kρ

is the in-plane wavenumber.
Turning from Cartesian coordinates to cylindrical coordinates and integrating over

the polar angle, the X component of the reflected field can be expressed as

ESPP
x = −ω2µ0 pA

8πk2
0

cos θ p.v.
∫ +∞

−∞
dkrk2

r R(kr)eikx1(x+x0)H(1)
1
(
kρr
)
, (A7)
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where r =
√

y2 + z2, and H(1)
1 is the Hankel function of the first kind.

Next, using the Cauchy theorem, one can evaluate the integral:

ESPP
x = −ω2µ0 pA

8πk2
0

cos θ k2
SPPeikx1(x+x0)H(1)

1 (kSPPr)× 2πi Res
kr=kSPP

R(kr), (A8)

where kSPP = k0
√

ε1ε2/(ε1 + ε2), kx1 is evaluated for kr = kSPP, and Res stands for residue.
Finally, after substituting the explicit expression for the residue, one obtains:

ESPP
x = −2ASPPε

1
2
Mee−γD x H(1)

1 (kSPPr) cos θ (A9)

with
ASPP = pAkSPPγ2

D(4ε0)
−1
(

ε3/2
Me /

(
ε2

Me − 1
))

exp(−γDx0). (A10)

The obtained expression agrees with the results expressed by relation (3).

Appendix B

Here, our goal is to obtain the efficiency for SPP excitement by considering the Lorentz
reciprocity theorem [52] with fields represented by their cylindrical eigenfunction expan-
sions. We consider {E1, H1} and {E2, H2} to be solutions for the same dielectric-metal
structure with the current densities given by j1 = 0 and j2 = −iωpδ(r− r0), where
δ(r) = δ(x)δ(y)δ(z) is the Dirac delta function. In such conditions, the Lorentz reciprocity
theorem states that ∮

∂V
(E1 ×H2 − E2 ×H1)dS = iωpE1(r0). (A11)

for any volume V containing the point r = r0.
In the region x > 0, SPP fields can be written as [38]

ESPP =


ESPP,r

ESPP,θ

ESPP,x

 = ∑m am


ikx1
kSPP

(Zm+1(kSPPr)− Zm−1(kSPPr))
ikx1
kSPP

(Zm+1(kSPPr) + Zm−1(kSPPr))

2Zm(kSPPr)

eikx1x+imθ , (A12)

HSPP = ∑
m

am
ωε0ε1

kSPP

 Zm+1(kSPPr) + Zm−1(kSPPr)

−(Zm+1(kSPPr)− Zm−1(kSPPr))

0

eikx1x+imθ , (A13)

where Zm could be any cylindrical function of order m (in particular, in the Hankel function
of the first kind Zm = H(1)

m corresponds to the outgoing SPP, and in the Hankel function of
the second kind Zm = H(2)

m corresponds to the incoming SPP), kSPP = k0
√

ε1ε2/(ε1 + ε2),

kx1 = i
√

k2
SPP − ε1k2

0 = iγD, ε1 = 1, and k0 = ω/c. Therefore, the relations for the electric
and magnetic fields can be sought in the form

E1 = ∑
m

Am


ikx1
kSPP

Jm
′(kSPPr)

mkx1
k2

SPPr
Jm(kSPPr)

Jm(kSPPr)

ei(kx1x−mθ) = ∑
m

AmE−m , (A14)

H1 = ∑
m

Am
ωε0ε1

kSPP


− m

kSPPr Jm(kSPPr)

i Jm
′(kSPPr)

0

ei(kx1x−mθ) = ∑
m

AmH−m (A15)
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E2 = Ẽ2 + ∑
m

Bm


ikx1
kSPP

H(1)
m
′
(kSPPr)

− mkx1
k2

SPPr
H(1)

m (kSPPr)

H(1)
m (kSPPr)

ei(kx1x+mθ) = Ẽ2 + ∑
m

BmE+
m (A16)

H2 = H̃2 + ∑
m

Bm
ωε0ε1

kSPP


m

kSPPr H(1)
m (kSPPr)

iH(1)
m
′
(kSPPr)

0

ei(kx1x+mθ) = H̃2 + ∑
m

Bm H+
m , (A17)

where Jm(x) stands for the Bessel function of order m and the tilde terms do not contain
outcoming surface waves.

Expressions for the region x < 0 can be obtained from (A14)–(A17) by replacement
of the permittivity of the dielectric media ε1 by the permittivity of the metal substrate

ε2 = εMe, kx1 by kx2 = −i
√

k2
SPP − ε2k2 = −iγMe, and multiplication of E±m and H±m by kx1

kx2
in order to satisfy the interface conditions.

Considering the integration volume V as an infinitely long cylinder oriented along
the X axis, one can rewrite (A11) as∫ 2π

0
rdθ

∫ +∞

−∞
dx(E1 ×H2 − E2 ×H1)er = iωpE1(r0). (A18)

Due to the orthogonality of the different modes, the unknown coefficient Bm can be
calculated as

Bm =
iωpE−m(r0)

Nm
, (A19)

where Nm is given by

Nm =
∫ 2π

0
r dθ

∫ +∞

−∞
dx
(
E−m ×H+

m − E+
m ×H−m

)
er =

2kx1

ω2µ0k2
SPP

(
ε2

2 − ε2
1
)
(ε1 + ε2)

ε2
1ε2

2
. (A20)

For the point dipole |p| = pA located at r0 = (0, 0, x0) which is parallel to the interface,
there are only two azimuthal numbers m supporting the nonzero product:

pE−±1 = ± ikx1

2kSPP
pAeikx1x0∓iθ . (A21)

Consequently, the electric field of the outgoing SPP in the upper half-plane can be
expressed as

ESPP
x = −2ASPPε

1
2
Mee−γD x H(1)

1 (kSPPr) cos θ (A22)

with
ASPP = pAkSPPγ2

D(4ε0)
−1
(

ε3/2
Me /

(
ε2

Me − 1
))

exp(−γDx0). (A23)

The obtained expression agrees with the results expressed by relations (3) and (A10).
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