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Аннотация. Выполнено численное моделирование процесса роста и  схлопывания парового 
пузырька, возникающего на  кончике оптоволокна (лазерного нагревательного элемента), 
погруженного в воду. Построенные численные решения позволяют при появлении пузырька 
найти распределение температурного поля в перегретой жидкости, получить значения скорости 
и температуры кавитационной струи, возникающей при схлопывании пузырька.

Ключевые слова: лазерная кавитация, численное моделирование, модель парообразования-
конденсации, двухфазная среда

Финансирование. Работа выполнена в рамках проекта Российского научного фонда № 22-19-00189-П. 

Ссылка для цитирования: Дац Е.П., Гузев М.А., Чудновский В.М. Исследование процесса лазерной 
кавитации с использованием численного моделирования // Доклады Российской академии 
наук. Физика, технические науки / Doklady Physics. 2025. Т. 525. С. 21–30. DOI: 10.7868/
S3034508125060033.

Поступила в редакцию 28.07.2025
После доработки 28.07.2025

Принята к публикации 03.09.2025



22

DOKLADY ROSSIYSKOY AKADEMII NAUK. FIZIKA, TEKHNICHESKIE NAUKI / DOKLADY PHYSICS, 2025, vol. 525, pp. 21–30

Лазерная кавитация – явление роста и схлопыва-
ния паровых пузырьков при интенсивном локаль-
ном лазерном нагреве некоторого выделенного объ-
ема жидкости до температуры, превышающей тем-
пературу кипения. Возникающий при этом пузырек 
сначала растет в процессе парообразования, а затем, 
при достижении максимального размера, ускоренно 
схлопывается, что и определяет его как кавитацион-
ный [1, 2]. При схлопывании пузырька формирует-
ся нагретая кумулятивная струя, благодаря которой 
происходит быстрый перенос тепла через “холодное” 
окружение (теплоотвод), что имеет большое практи-
ческое значение в технических приложениях и меди-
цине [1–6].

При лазерном нагреве жидкости процесс парооб-
разования можно инициировать с помощью импуль-
сного [5–8] или непрерывного лазерного излучения 
[1–4, 9, 10]. Механизмы нагрева и вскипания жид-
кости для этих случаев излучения могут существенно 
отличаться [10], что оказывает влияние на характери-
стики кумулятивной струи. Из экспериментальных 
данных известно, что максимально достижимая тем-
пература перегрева при поверхностном кипении при 
атмосферном давлении не превышает 120 °C [10, 11]. 
Однако лазерное излучение может проникать вглубь 
жидкости, что позволяет разогревать объем, не со-
держащий растворенных веществ и примесей, вдали 
от контактных поверхностей. Это приводит к тому, 
что внутри объема жидкости может возникнуть зна-
чительный локальный перегрев, теоретически вплоть 
до температуры спинодали (305 °C) [10, 12, 13].

В работе предложен и реализован подход к мо-
делированию лазерного нагрева воды и вызванный 
этим процессом однократный акт роста и схлопыва-
ния пузырька с последующим формированием и раз-
витием кумулятивной струи. При построении модели 
лазерного нагрева используются стандартные соотно-
шения механики сплошной среды (1)–(4). Числен-
ное решение соответствующих уравнений позволяет 
найти распределения в воде температуры и скорости, 
значения которых являются начальными при моде-
лировании процесса эволюции пузырька.

Для описания процесса парообразования-конден-
сации широкое применение получила модель Ли [14]. 
В ней предполагается, что процесс объемного массо-
обмена происходит при температуре, близкой к тем-
пературе насыщения. Для рассматриваемого нами 

случая лазерного нагрева происходит значительный 
перегрев некоторого объема воды выше температуры 
насыщения, поэтому использование данной модели 
приводит к мгновенному образованию паровой фазы 
во всей области перегрева и, как следствие, некор-
ректному моделированию динамики роста парового 
пузырька. В работе на основе метода “объема жид-
кости” предложен подход к моделированию процес-
са поверхностного массообмена, при котором ско-
рость процесса парообразования-конденсации, как 
и в модели Ли, определяется разницей между теку-
щей температурой среды и температурой насыщения, 
однако массообмен происходит только на межфазной 
границе. Таким образом, при перегреве некоторого 
объема воды исключается возможность его перехода 
в паровую фазу одновременно в каждой точке пере-
грева, а процесс парообразования начинается только 
при наличии начальной паровой фазы. В результате 
моделирования получаем описание процесса лазер-
ной кавитации, соответствующее экспериментально 
наблюдаемому.

МОДЕЛЬ НАГРЕВА ВОДЫ НЕПРЕРЫВНЫМ 
ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

Система уравнений для воды включает уравнение 
неразрывности (1), уравнение изменения импульса 
(2) и уравнение притока тепла (3):
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где 


v  – скорость, T – температура, p – давление; ρl, 
µl, cpl, λl – плотность, вязкость теплоемкость, те-
плопроводность воды соответственно. Источник Q 
в уравнении (3) описывает распределение плотности 
потока лазерного излучения с учетом его поглощения 
в воде по закону Бугера–Ламберта–Бера [15]:

Q kQ kz= −( ),0 exp                     (4)

где Q0 – плотность потока лазерного излучения 
на торце оптоволокна, z – расстояние от торца оп-
товолокна параллельно его оси до  точки среды, 

ФИЗИКА 
PHYSICS

For Citation: Dats E.P., Guzev M.A., Chudnovskii V.M. Study of laser cavitation process using numerical 
simulation. Doklady Rossiyskoy Akademii Nauk. Fizika, Tekhnicheskie Nauki / Doklady Physics. 2025,  
vol. 525, pp. 21–30. (In Russ.) DOI: 10.7868/S3034508125060033.

Received July 28, 2025
Revised July 28, 2025

Accepted September 3, 2025



	 ИССЛЕДОВАНИЕ ПРОЦЕССА ЛАЗЕРНОЙ КАВИТАЦИИ /	 23
	 STUDY OF LASER CAVITATION PROCESS 	 23

DOKLADY ROSSIYSKOY AKADEMII NAUK. FIZIKA, TEKHNICHESKIE NAUKI / DOKLADY PHYSICS, 2025, vol. 525

k – коэффициент поглощения. Действие источника 
(4) ограничено цилиндрической областью, примы-
кающей к торцу оптоволокна (рис. 1). Данное огра-
ничение связано c распространением лазерного из-
лучения вдоль оси оптоволокна и слабым угловым 
рассеиванием относительно оси, вне данной области 
функция Q равна нулю. В экспериментах использует-
ся лазерное излучение с длиной волны 1.47 мкм, для 
которой коэффициент k = 2850–1 [16]. 

Q0 = 4P/(πD2) = 1.77 × 107 Вт/м2, 

где P = 5  Вт – мощность лазерного излучения,  
D = 600 мкм – диаметр волокна. В уравнении (3) от-
сутствует источник диссипации, так как влиянием 
вязкого нагрева в рассматриваемом процессе лазер-
ного нагрева можно пренебречь.

Плотность и вязкость воды зависят от температу-
ры согласно экспериментальным данным [17] (при 
атмосферном давлении). Теплоемкость и теплопро-
водность воды считаются постоянными. Распре-
деление температуры в  оптоволокне определяется 
из уравнения теплопроводности:

ρ λq pq
q

q qc
T

t
T

∂
∂

= ∇ ∇( ),
где индекс q означает принадлежность физических 
характеристик к материалу оптоволокна (кварц).

Задача рассматривается в осесимметричной поста-
новке в цилиндрической системе координат. Расчет-
ная сетка состоит из двух областей, в каждой из ко-
торых заданы характеристики материала оптоволокна 
и окружающей его воды (см. рис. 1). Область с водой 
ограничена внешней границей Г2, границей Г1 и осью 
симметрии оптоволокна. Область с  оптоволокном 
ограничена границами Г1, Г3 и осью симметрии.

На границе контакта оптоволокна и воды Г1 за-
дана нулевая скорость, при этом температуры воды 

и оптоволокна равны, а нормальные компоненты век-
тора теплового потока оптоволокна и воды совпадают:
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На границе Г2 задано условие равенства давления 
воды атмосферному, нормальная компонента векто-
ра теплового потока равна нулю:
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На поверхности Г3 нормальная компонента векто-
ра теплового потока равна нулю:
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∂

=
T

n
q

В начальный момент времени во всей расчетной 
области задана нулевая скорость, атмосферное дав-
ление p = 105 Па, начальная температура Т0 = 16 °C.

Решение системы (1)–(4) было реализовано в сре-
де физического моделирования ANSYS FLUENT 2021 
на равномерной квадратной сетке с размером эле-
мента d = 5 мкм в рамках метода конечных объемов. 
Поскольку уравнение состояния воды в рассматрива-
емой модели не включает давление, а плотность зави-
сит только от температуры, то для решения системы 
уравнений (1)–(4) используется алгоритм SIMPLE 
[18]. Он связывает давление и скорость в уравнении 
изменения импульса (2) с помощью итерационной 
процедуры, в ходе которой корректируется поле дав-
ления так, чтобы полученное поле скоростей удов-
летворяло уравнению неразрывности (1).

МОДЕЛЬ 
ПАРООБРАЗОВАНИЯ–КОНДЕНСАЦИИ

Рассматривается двухфазная среда “вода–пар”. 
Закон изменения каждой из фаз имеет вид

Рис. 1. Расчетная область размером 0.005 × 0.01 м. Размер квадратного элемента сетки 5 мкм. Длина оптоволокна 
0.001 м
Fig. 1. Computational domain with dimensions 0.005 × 0.01 m. The size of a square mesh element is 5 µm. Optical fiber 
length: 0.001 m
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где 


v  – скорость двухфазной среды, α αg l,  – объем-
ная доля пара и воды соответственно; α αg l+ = 1. 
Индексы g и  l обозначают принадлежность харак-
теристик к паровой и жидкой фазе соответственно, 
 m mg l  – источник массообмена. В качестве механиз-

ма межфазного массообмена используется модель ис-
парения–конденсации [14], в которой скорость паро-
образования и конденсации пропорциональны раз-
нице между текущей температурой и температурой 
насыщения:
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где γg/γl – коэффициенты парообразования/конден-
сации, εg, εl – минимальная доля фазы, при которой 
происходит массообмен, Tsat(P) – температура насы-
щения. Полагаем, что коэффициенты массообмена 
γg, γl являются постоянными величинами. Темпера-
тура насыщения зависит от давления по формуле, яв-
ляющейся аппроксимацией экспериментальных дан-
ных для воды [17]:
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Уравнения (5)–(7) дополняются уравнениями 
изменения импульса и притока тепла в двухфазной 
среде:
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где W – источник нагрева, обусловленный вязким 
трением, L – скрытая теплота парообразования 
(конденсации), 



F  – объемная сила, действующая 
на  границе раздела фаз и  моделирующая поверх-
ностное натяжение, cp, ρ, λ, µ – теплоемкость, плот-
ность, теплопроводность и вязкость двухфазной сре-
ды соответственно. В уравнении притока тепла (9) 
опущен источник лазерного нагрева, так как про-
цесс массообмена происходит значительно быстрее, 
чем процесс разогрева до температуры насыщения 

(примерно в 50 раз), поэтому влиянием источника 
(4) при моделировании динамики парового пузырь-
ка можно пренебречь.

Характеристики среды “вода–пар” представляют-
ся в виде:

ρ α ρ α ρ λ α λ α λ
µ α µ α µ α α
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Характеристики жидкой фазы соответствуют ра-
нее описанным для системы (1)–(3). Плотность па-
ровой фазы задается при помощи уравнения состоя-
ния идеального газа ρg = pM/(RT), где M – молярная 
масса пара, R – универсальная газовая постоянная. 
Данное представление (10) соответствует известному 
методу “объема жидкости” (Volume of Fluid) [3]. Вы-
ражение для объемной силы 



F  имеет вид [19]
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где σ = ⋅ −−( . ) ( )0 073 6001Hм K T  – коэффициент по-
верхностного натяжения, линейно зависящий от тем-
пературы [17], k – кривизна межфазной границы. Те-
плопроводность λg, теплоемкость cpg и вязкость µg па-
ровой фазы являются постоянными. В уравнении (8) 
опущен член, характеризующий естественную кон-
векцию в поле силы тяжести, поскольку процесс ка-
витации происходит значительно быстрее процесса 
всплытия парового пузырька.

Решение системы (5)–(9), как и решение систе-
мы (1)–(4), реализовано в  среде физического мо-
делирования ANSYS FLUENT 2021. Оптимальный 
выбор размера сетки d = 5 мкм при использовании 
метода “объема жидкости” ранее был исследован 
в работе [3]. Для расчета динамики двухфазной сре-
ды применяется алгоритм SIMPLE для несжимаемой 
жидкости.

Особенностью рассматриваемого в  работе под-
хода является ограничения на  минимальную долю 
фазы во  время действия источников массообмена 
(6), (7). Так как в начальный момент времени зада-
ется область, в которой присутствуют только жидкая 
фаза (αl = 1, αg = 0) и область, содержащая паровую 
фазу (αl = 0, αg = 1), т. е. паровой пузырек, то массо-
обмен возможен только в окрестности границы раз-
дела двух фаз. Следовательно, при моделировании 
исключается процесс объемного вскипания жидкой 
фазы в областях с перегретой водой (T > Tsat) и про-
цесс объемной конденсации внутри пузырька при  
T < Tsat (Tsat – температура насыщения). Таким об-
разом, в рамках рассматриваемой модели сохраня-
ется корректность физической интерпретации чис-
ленного метода, заключающегося в моделировании 
поверхностного массообмена. Оценка коэффици-
ентов парообразования и  конденсации определя-
ется из  наблюдаемой экспериментально скорости  
движения поверхности пузырька на этапе роста и схло-
пывания. Значение коэффициента γg имеет порядок  
~106 с–1. Для коэффициента конденсации подобрано 
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значение γl ~ 107 с–1. Величины данных коэффициен-
тов обратно пропорциональны, с точностью до раз-
мерного коэффициента, толщине межфазной грани-
цы (размеру элемента расчетной сетки d). В работе [20] 
был приведен обзор используемых в исследованиях 
различных авторов диапазонов используемых значе-
ний коэффициентов массообмена, которые варьиру-
ются от 0.1 с–1 до 107 с–1 в зависимости от условий на-
грева, размера сетки и формы межфазной границы.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ  
ЛАЗЕРНОГО НАГРЕВА ВОДЫ

Численное решение системы (1)–(5) позволяет 
найти распределение температурного поля в  зави-
симости от выбора мощности лазерного излучения 
и времени его действия. На рис. 2 представлены ре-
зультаты эксперимента и численного моделирования 
температуры при лазерном нагреве.

На рис. 2а показана тень, отбрасываемая разогре-
той водой при съемке “на просвет”. Тень возникает 
вследствие изменения плотности воды при нагреве, 
где контуры формирующейся темной области опре-
деляют границу градиента плотности, при котором 
преломляющийся луч светового источника переста-
ет попадать в объектив камеры. На рис. 2б показа-
на область в  окрестности оптоволокна, в  которой 
вычисленные в различные моменты времени значе-
ние модуля температурного градиента превышают  
5 · 105 К/м. На рис. 2в показано соответствующее рас-
считанное температурное поле. Время моделирования 

температуры t = 45 мс соответствует времени действия 
лазерного источника в эксперименте, после чего на-
блюдается явление кавитации.

На рис. 3 показаны рассчитанные значения темпе-
ратуры воды и оптоволокна вдоль оси симметрии в за-
висимости от расстояния z от торца оптоволокна, где 
отрицательные значения z соответствуют оптоволокну. 
Как следует из рис. 3, вода перед торцом оптоволок-
на существенно перегрета. Например, на расстоянии  
z ~ 120 мкм температура воды может достигать 190 °C.

Известно, что при поверхностном кипении пу-
зырьки начинают расти из микроскопических воз-
душных зародышей, которые изначально распре-
делены на неровностях поверхности твердой фазы, 
а также образуются при внесении оптоволокна из ат-
мосферы в воду. Эксперимент показал, что первый 
паровой пузырек зарождается на поверхности в цен-
тре торца оптоволокна, где проходит граница раздела 
твердой и жидкой фазы. Перегрев воды выше темпе-
ратуры насыщения приводит к тому, что образовав-
шийся на поверхности торца оптоволокна паровой 
пузырек начинает ускоренно расти за счет интенсив-
ного парообразования в перегретой области.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ  
ПРОЦЕССА РОСТА–СХЛОПЫВАНИЯ 

ПАРОВОГО ПУЗЫРЬКА

Пусть в  некоторый новый момент времени  
t = 0 в  центре торцевой поверхности оптоволокна 

Рис. 2. Нагрев воды вблизи торца оптоволокна. а – Фото тени, образующейся в процессе лазерного нагрева;  
б – область, в  которой вычисленные значения модуля температурного градиента превышают 5 . 105 K/м;  
в – вычисленное температурное поле. Номера кадров соответствуют времени t1 = 10 мс, t2 = 15 мс, t3 = 30 мс,  
t4 = 45 мс; Q0 = 1.77 . 107 Bт/м (мощность 5 Вт). Штриховой линией обозначена поверхность торца оптоволокна
Fig. 2. Heating of water near the end face of an optical fiber. a – Shadow image formed during laser heating; б – region where 
the calculated temperature gradient magnitude exceeds 5 . 105 K/m; в – calculated temperature field. Frame numbers cor-
respond to times t1 = 10 ms, t2 = 15 ms, t3 = 30 ms, t4 = 45 ms; Q0 = 1.77 . 107 W/m (power 5 W). The dashed line indicates 
the optical fiber end surface
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присутствует пузырек радиусом r0 = 50 мкм и вну-
тренним давлением p0 = 1 атм. Начальные распреде-
ления температуры и скорости в двухфазной среде 
получены с помощью численных решений системы 
уравнений (1)–(5). Часть поверхности пузырька со-
прикасается с областью температур, превышающих 
100 °C. Таким образом, при t > 0 задан процесс па-
рообразования (6). Рост пузырька происходит при 
преодолении давлением пара силы поверхностно-
го натяжения. На рис. 4 показан процесс эволюции 
пузырька, наблюдаемый экспериментально (рис. 4а) 
и полученный в результате численного моделирова-
ния (рис. 4б), для различных моментов времени.

На рис. 4 видно хорошее согласование численных 
решений и экспериментальных данных. На рис. 4б(6) 
показан максимальный размер, а на рис. 4б(10) ми-
нимальный размер пузырька в процессе схлопыва-
ния. Схлопывание пузырька приводит к росту давле-
ния, в результате чего наблюдается вторичный рост 
паровой фазы (отскок) [3]. С другой стороны, в мо-
мент максимального схлопывания пузырька начи-
нает формироваться разогретая кумулятивная струя, 
которая на следующем кадре вторично вскипает (см. 
рис. 4б(11)). Вторичное вскипание возникает из-за 
понижения давления в движущейся нагретой жид-
кости [21]. Далее вторичная паровая фаза, имеющая 
тороидальную форму, схлопывается с образованием 
затопленной струи (см. рис. 4б(12)).

На рис. 5 показано распределение температуры 
и скорости движения паровой и жидкой фаз в пу-
зырьке и окружающей среде в различные моменты 
времени. Из рис. 5(3) следует, что к моменту нача-
ла схлопывания температура в  пузырьке достигает 
значений ~80 °C, что ниже температуры насыщения, 
тогда как давление в пузырьке падает до 0.4 атм. По-
нижение давления и температуры связано с расшире-
нием из-за инерционного движения жидкости вокруг 
пузырька.

После достижения максимального размера пу-
зырек начинает ускоренно схлопываться. При его 
схлопывании происходит увеличение температуры 
пара (см. рис. 5(5, 6). Из расчетов следует, что в мо-
мент коллапса пузырька и последующего отскока (см. 
рис. 5(6)) жидкая фаза приобретает максимальную 
скорость ~100 м/c.

Моделирование кавитации происходит в услови-
ях, когда нарастающий пузырек “раздвигает” окружа-
ющую нагретую не вскипевшую жидкость. При этом 
вокруг пузырька образуется слой нагретой жидкости, 
толщина которого изменяется в соответствии с дина-
микой роста–схлопывания кавитационного пузырь-
ка. На рис. 6 показано изменение во времени объема 
пузырька и соответствующее ему изменение среднего 
значения температуры в слое воды на поверхности пу-
зырька на стадии его схлопывания, а также усреднен-
ное значение температуры затопленной струи. Тем-
пература слоя воды измеряется вдоль оси симметрии 
в точках, где значения температуры не меньше 30 °C. 
Из рис. 6 следует, что в момент достижения пузырь-
ком максимального размера слой воды на поверхно-
сти пузырька имеет среднюю температуру ~57 °C.

Рис. 3. Распределение температуры вдоль оси симме-
трии (r = 0 мкм) перед началом процесса парообра-
зования, z = 0 мкм – координата торца оптоволокна
Fig. 3. Temperature distribution along the symmetry axis 
(r = 0 µm) before the onset of vaporization, z = 0 µm cor-
responds to the optical fiber end face coordinate
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Рис. 4. Стадия изменения размера кавитационного 
пузырька во времени. а – Результат эксперименталь-
ной съемки; б – численный расчет. Фрагменты 1–6 
соответствуют процессу роста, фрагменты 7–10 – 
процессу схлопывания, фрагменты 11–12 соответ-
ствуют процессу вторичного роста  и схлопывания 
паровой фазы
Fig. 4. Stage of variation in the cavitation bubble size 
over time. а – Experimental recording; б – numerical 
simulation. Frames 1–6 correspond to bubble growth, 
frames 7–10 to collapse
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После схлопывания пузырька картина процес-
са с течением времени развивается согласно рис. 7. 
На нем видно, что на оси симметрии формируется 
струя, а движение воды приобретает форму торои-
дального вихря. Первый такой вихрь возникает при 
пробитии поверхности пузырька водой, движущей-
ся со скоростью ~30 м/с (см. рис. 7(1, 2)). В это вре-
мя в  окрестности торца оптоволокна в  результате  
“отскока” либо вторичного вскипания расширяется 
область с паром (вторичная паровая фаза). Коллапс 
вторичной паровой фазы (см. рис.  7(3)) приводит 
к образованию второй кумулятивной струи, созда-
ющей еще один тороидальный вихрь (см. рис. 7(4)), 
в котором жидкость вращается. Далее остатки пара 
конденсируются и формируется затопленная струя, 
в которой вихри не образуются. На рис. 7(5, 6) пока-
зано движение воды в отсутствие паровой фазы.

Температура кумулятивной струи достигает мак-
симального значения Т = 60 °C на расстоянии 5 мм 
от торца оптоволокна и 47 °C на оси симметрии, где 
ее скорость равна ~20 м/c. Средняя температура за-
топленной струи достигает ~53 °C, что примерно со-
ответствует температуре слоя воды на поверхности 
пузырька в момент достижения им максимального 
размера (см. рис. 5(3)) и при следующем после схло-
пывания процессе вторичного роста паровой фазы 
(см. рис. 7(3, 4)). Отметим, что кавитация может со-
провождаться более чем 3–5 циклами роста–схлопы-
вания пузырька, в которых формируются тороидаль-
ные структуры (“ринги”), где жидкость вращается. 
“Ринги” препятствуют теплообмену с окружающей 
средой, что позволяет переносить тепло заключенной 
в них жидкости на большие расстояния.

Рис. 5. Температура и скорость двухфазной среды в процессе роста–схлопывания пузырька
Fig. 5. Temperature and velocity of the two-phase medium during bubble growth and collapse
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Рис. 6. Изменение объема пузырька и температуры слоя воды на его поверхности во времени
Fig. 6. Change in bubble volume and temperature of the water layer at its surface over time

0 100 200

мм3

°С

t, мкс

Объем пузырька

Температура слоя воды

300 400 500 600 700

2

4

6

8

10

12

14

16

18

20

50

55

60

65

70

75

240 340 440 540 640 740

V



ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ФИЗИКА, ТЕХНИЧЕСКИЕ НАУКИ / DOKLADY PHYSICS, 2025, том 525

28	 ДАЦ и др. / DATS et al.

Рис. 7. Скорость и температура кумулятивной струи в различные моменты времени
Fig. 7. Velocity and temperature of the cumulative jet at various time moments
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ЗАКЛЮЧЕНИЕ

Предложен численный подход к решению зада-
чи лазерного нагрева воды и  последующего роста 
и схлопывания парового пузырька в процессе паро-
образования–конденсации. Данный подход спосо-
бен описывать процесс поверхностного массообмена 
на границе раздела “вода–пар”, благодаря чему время 
роста и схлопывания парового пузырька соответству-
ет наблюдаемому в эксперименте. Результаты моде-
лирования показывают, что кавитационный пузырек 

в процессе роста приводит к образованию слоя разо-
гретой, но не вскипевшей воды на своей поверхно-
сти. Средняя температура слоя меняется в зависимо-
сти от размера пузырька и определяет температуру 
кумулятивной струи, формирующейся в результате 
схлопывания. Показано, что в кумулятивной струе 
формируются тороидальные структуры, в  которых 
вращающаяся жидкость препятствуют теплообмену 
с окружающей средой, что позволяет переносить теп-
ло на большие расстояния.
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