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Abstract—The one-dimensional process of material deformation due to local heating and subse-
quent cooling is analyzed in the framework of the classical theory of elastoplastic deformations. The
problem of formation of residual stresses in a thin plate made of an elastoplastic material under
a given thermal action is solved. The graphs of fields of residual stresses and displacements are
constructed.
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1. INTRODUCTION
The field of residual stresses is formed in the process of elastoplastic deformation with subsequent

unloading of the material deformed in this way. It is known that residual stresses may arise because
of local thermal actions, for example, near the welding joints [1]. Obviously, in this case the process of
elastoplastic deformation is initiated by fast heating of the material along the welding line. There are
known engineering methods for calculating the residual stresses in the region of thermal influence of the
welding joint [2]. Here we present the exact solution of the problem of formation of residual stresses under
the assumption that the connection between the processes of heat conduction and deformation under
the conditions of intensive thermal action can be neglected, i.e., the calculations can be performed in the
framework of the theory of thermal stresses [3, 4] with the yield point dependence on the temperature
taken into account.

2. BASIC MODEL DEPENDENCIES
We assume that, till the time t = 0, the plate is in free state at room temperature T0. We also

assume that the elastoplastic material of the plate obeys the Prandtl–Reiss-type model [5, 6], where
the strains eij are assumed to be small and are composed of elastic ee

ij and plastic ep
ij residual strains

eij = ee
ij + ep

ij = 0.5(ui,j + uj,i). (2.1)

The level and distribution of elastic strains and the temperature over the plate determine the stresses
in the plate which obey the Duhamel–Neumann law

σij = (λee
kk + 3αKθ)δij + 2μee

ij , θ = T (r, t) − T0. (2.2)

Here λ and μ are the Lamé parameters, K is the modulus of uniform compression of the material
(3K = 3λ + 2μ), α is the coefficient of linear temperature expansion of the material, and T (r, t) is the
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current temperature. The plastic flow process in the plate material begins at the time instant when the
plasticity condition in the Tresca form [7]

f(σij) = max |σi − σj | − 2k(θ) = 0 (2.3)

is satisfied, where the σi are the principal stresses and k(θ) is the yield point of the material at a given
temperature. In our further calculations, we consider the simplest linear dependence k(θ) = k0 − βθ,
where k0 is the yield point of the material at room temperature and β is the material thermophysical
constant determining the degree of the yield strength decrease with increasing temperature. Under
the conditions of the accepted von Mises maximum principle [7], the surface (2.3) becomes a plastic
potential which implies the associated plastic flow law

εp
ij = ξ

∂f

∂σij
, ξ =

√
εp
klε

lk
ij

(
∂f

∂σmn

∂f

∂σnm

)−1/2

. (2.4)

If we supplement relations (2.1)–(2.4) with local consequences of the conservation laws (equation of
motion and equation of the internal energy balance) and postulate the heat conduction law, for example,
in the Fourier form, then we obtain a closed mathematical model of deformation.

3. STATEMENT OF THE PROBLEM. ELASTIC DEFORMATIONS
We assume that an infinite plate is heated so that the temperature on its line which is a circle of

radius R increases proportionally to time. This action increases the stresses and strains in the plate
material. We assume that the plate thickness is sufficiently small and the plate is under the conditions
of plane stress state so that in the cylindrical coordinates r, ϕ, z the normal stresses σzz on the sites
orthogonal to the plate are zero,

σzz = (λ + 2μ)ezz + λ(err + eϕϕ) − 3αKθ = 0,

err = ee
rr = ur,r, ezz = ee

zz = uz,z, eϕϕ = ee
ϕϕ =

ur

r
.

(3.1)

According to (2.2), for the other nonzero components of the stress tensor we then have

σrr =
4μ(λ + μ)

λ + 2μ
ur,r +

2λμ

λ + 2μ
ur

r
− 6αμK

λ + 2μ
θ,

σϕϕ =
4μ(λ + μ)

λ + 2μ
ur

r
+

2λμ

λ + 2μ
ur,r −

6αμK

λ + 2μ
θ.

(3.2)
By substituting the stress components from (3.2) into the equilibrium equations written in cylindrical

coordinates, we obtain the following equation for the only nonzero component of the displacement vector:

ur,rr +
ur,r

r
− ur

r2
=

3αK

2(λ + μ)
θ,r. (3.3)

If in the energy balance equation (a local version of the energy conservation law), we neglect the
heat source due to deformation (connection between the processes of deformation and heat transfer)
and accept the simplest linear dependence of the heat flow on the temperature gradient, then for
the nonstationary distribution of temperature over the plate we obtain the classical hear conduction
equation [8, 9]. Its solution is known in the case under study and for the accepted initial and boundary
conditions [9]. We can use this solution (we do not write it out because of its cumbersomeness) or use
well-known software that also permits obtaining the temperature distribution over the plate heated
from time t = 0 along the line r = R till the temperature Tk on this line. To obtain the simplest
solution, we assume that the temperature on the line r = R increases proportionally to time from
the room temperature T0 to the final heating temperature Tk. The latter can be arbitrary including the
melting temperature for the plate material. At temperatures so high, it is expedient to take into account
the dependence of the heat conductivity coefficient on the temperature gradient and the temperature
variation rate. But, to obtain an exact solution, we neglect such dependencies and assume that the heat
conductivity coefficient is constant. At a higher temperature level, the temperature stresses may cause
solid phase transitions that significantly change the structure of the plate material. The latter lead to
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irreversible deformations which we further take into account as plastic strains and to variations in the
Lamé parameters λ and μ in the thermal influence region of (the phase transition zone). For our purposes
(i.e., to obtain the exact solution), we do not consider such variations, i.e., we assume that λ and μ are
constant.

From the known distribution θ(r, t), we can find the displacements by integrating Eq. (3.3) separately
in the regions r < R and r > R. The calculated displacement field is also used to obtain the stress
distribution. For the domain r < R, we obtain

ur =
b

μr
ψ(r, t) + c1r, σrr = − 2b

r2
ψ(r, t) + qc1, σϕϕ =

2b
r2

[ψ(r, t) − r2θ] + qc1,

b =
3αμK

2(λ + μ)
, q =

2μ(3λ + 2μ)
λ + 2μ

, ψ(r, t) =

r∫

0

θ(ρ, t)ρ dρ.

(3.4)

In the domain r > R, we obtain

ur =
b

μr
φ(r, t) +

c2

r
, σrr = − 2b

r2
φ(r, t) − 2μ

c2

r2
, σϕϕ = −σrr − 2bθ, φ(r, t) =

r∫

R

θ(ρ, t)ρ dρ.

(3.5)
By satisfying the continuity conditions for the displacements and stresses on the boundary r = R, we

obtain the constants of integration c1 and c2:

c1 = 0, c2 = bψ(R, t). (3.6)

The dependences (3.4)–(3.6) solve our problem, but they have a restriction related to the output of
stress states (3.4) and (3.5) to the loading surface, which starts the plastic flow in the plate material.
This fact is related to the restrictions on the heating rate; namely, it must be sufficiently large to cause
an appropriate level of temperature stresses. The plastic flow region evolves from the line r = R on
both sides and, at a certain current moment of heating, occupies the domain between the lines r = r1

and r = r2 (r1 < R < r2). Outside this domain, the plate deformation is still reversible and the quasistatic
parameters of such stress-strain states are still determined by (3.4)–(3.5) with the only difference that
the constants of integration are determined by the values different from (3.6),

c1(r1) =
2
q

(
− b

r2
1

ψ(r1, t) + bθ1 − k1

)
, c2(r2) =

r2
2

μ
(bθ2 − k2),

θn = θ(rn), kn = k(θn), n = 1, 2.
(3.7)

In the evolving plastic flow region, the stress states correspond to points of the loading surface (2.3).
In the case under study, these are points of the Tresca prism lying in the plane σzz = 0 of the principal
stress space on the line

σϕϕ = 2k(θ). (3.8)

By integrating the equilibrium equation under this condition, we obtain, in the entire flow region,

σrr = − 2
r

r∫

r1

k(θ(ρ, t)) dρ +
c3

r
. (3.9)

The reversible strains at any time and any point of the plastic flow region can now be calculated by
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formulas (3.8) and (3.9) expressing them in terms of (2.2) written in cylindrical coordinates,

ee
φφ = 2s[bθ − k(θ)] − g

r

[
c3

2
−

r∫

r1

k(θ(ρ, t)) dρ

]
,

ee
rr = 2s

{
bθ +

1
r

[
c3

2
−

r∫

r1

k(θ(ρ, t)) dρ

]
} + gk(θ),

s =
λ + μ

μ(3λ + 2μ)
, g =

λ

μ(3λ + 2μ)
.

(3.10)

The associated plastic flow law (2.4) implies the relation

ep
rr = ur,r − ee

rr = 0. (3.11)

By substituting (3.10) into (3.11), we obtain the equation for the displacements in the flow region,

ur,r = 2s
{

bθ +
1
r

[
c3

2
−

r∫

r1

k(θ(ρ, t)) dρ

]
} + gk(θ). (3.12)

We integrate this equation and obtain

ur = 2s
[
b

r∫

r1

θ(ρ, t) dρ +
c3

2
ln

r

r1
−

r∫

r1

1
ρ

ρ∫

r1

k(θ(χ, t)) dχ dρ

]
+ g

r∫

r1

k(θ(ρ, t)) dρ + c4. (3.13)

The unknown constants of integration c3 and c4 and the dimensions of the irreversible deformation
region (r1 < r < r2) can be found from the conditions that the displacement and stress fields are
continuous on the elastoplastic boundaries (r1, r2). After simple transformations, we obtain the relations

c3(r1) = 2r1

[
bθ1 −

2b
r2
1

ψ(r1, t) − k1

]
,

c4(r1) =
2br1

q

(
θ1 −

k1

b

)
+

(
1
μ

− 2
q

)
b

r1
ψ(r1, t),

(3.14)

and the system for determining the boundaries of the plastic flow region
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b

r2∫

r1

θ(ρ, t) dρ −
r2∫

r1

1
ρ

ρ∫

r1

k(θ(χ, t)) dχ dρ −
r2∫

r1

k(θ(ρ, t)) dρ

+
2b
r1

ψ(r1, t) +
(

1
2

ln
r2

r1
+ 1

){
2r1

[
bθ1 −

2b
r2
1

ψ(r1, t) − k1

]}
= 0,

bθ2r2 − r2k2 =
r2∫
r1

k(θ(ρ, t)) dρ + 2b
r1

ψ(r1, t) + 2r1k1 − bθ1r1.

(3.15)

The displacement and stress field distribution at the final moment of heating t = t̃ are shown in
Figs. 1 and 2, respectively. The calculations were performed for the following constants of the material:
α · (Tk − T0) = 6.2 × 10−3, λ/μ = 1.5, k0/μ = 1.1 × 10−3, and β(Tk − T0)/μ = 1.09 × 10−3.

4. COOLING OF THE PLATE

At a time t̃, we begin to cool the plate. In what follows, the tilde over a symbol denotes the functions
and constants calculated at time t̃. Then, in the reversible deformation regions, the displacements and
stresses are determined by (3.4)–(3.5) up to the constants of integration.
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Fig. 1.

Fig. 2.

In the region with accumulated irreversible deformations r̃1 < r < r̃2, the plastic deformations do not
change under unloading and are determined by the dependences

ep
ϕϕ = − 2bs

r

r∫

r̃1

θ̃(ρ) dρ +
2s
r

r∫

r̃1

k(θ̃(ρ)) ln ρ dρ +
(

s

r
ln

r

r̃1
+

g

2r

)
c̃3

+
2s
r

ln r

r∫

r̃1

k(θ̃(ρ)) dρ +
c̃4

r
− 2bsθ̃ + 2sk(θ̃), ep

rr = 0. (4.1)

The elastic deformations are calculated by (2.1),

ee
rr = ur,r, ee

ϕϕ =
u

r
− ep

ϕϕ. (4.2)

We use (4.2) to write out the Duhamel–Neumann law (2.2) in the form

σrr =
4μ(λ + μ)

λ + 2μ
ur,r +

2λμ

λ + 2μ

(
ur

r
− ep

ϕϕ

)
− 6αμK

λ + 2μ
θ,

σϕϕ =
4μ(λ + μ)

λ + 2μ

(
ur

r
− ep

ϕϕ

)
+

2λμ

λ + 2μ
ur,r −

6αμK

λ + 2μ
θ.

(4.3)

By substituting the stress tensor components (4.3) into the equilibrium equation and by replacing
the irreversible deformation components by (4.1), we obtain the following equation for the radial stress
component:

ur,rr +
ur,r

r
− ur

r2
= − 1

qs

ep
ϕϕ

r
+

g

2s
ep
ϕϕ,r +

b

μ
θ,r. (4.4)
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Fig. 3.

Fig. 4.

The solution of Eq. (4.4) is the function

ur =
b

μr

r∫

r̃1

θ(ρ, t)ρ dρ − r

2qs

r∫

r̃1

ep
ϕϕ(ρ)

ρ
+

1
sμr

r∫

r̃1

ep
ϕϕ(ρ)ρ dρ +

(r2 − r̃2
1)c5

2qsr
+

c6

r
, (4.5)

which allows us to calculate the stress (4.3) in the region with accumulated irreversible deformations

σrr = − 2b
r2

r∫

r̃1

θ(ρ, t) dρ − 1
2s

[ r∫

r̃1

ep
ϕϕ(ρ)

ρ
dρ +

1
r2

r∫

r̃1

ep
ϕϕ(ρ)ρ dρ

]
+ μ

(
2 +

r2 − r̃2
1

2r2sq

)
c5 −

2μ
r2

c6,

σφφ =
2b
r2

r∫

r̃1

θ(ρ, t) dρ − 1
2s

[ r∫

r̃1

ep
ϕϕ(ρ)

ρ
dρ +

1
r2

r∫

r̃1

ep
ϕϕ(ρ)ρ dρ

]

+ μ

(
2 +

r2 − r̃2
1

2r2sq

)
c5 −

ep
ϕϕ

s
− 2bθ +

2μ
r2

c6.

(4.6)

We again use the conditions that the displacement and stress fields are continuous on the elastoplas-
tic boundaries (r̃1, r̃2) to obtain the unknown constants of integration. After simple transformations, we
obtain

c1(r̃1, r̃2) =
1
sq

r̃2∫

r̃1

ep
ϕϕ(ρ)

ρ
dρ, c2(r̃1, r̃2) =

b

μ
ψ(r̃1, t) +

1
4μs

r̃2∫

r̃1

ep
ϕϕ(ρ) dρ,

c5(r̃1, r̃2) =

r̃2∫

r̃1

ep
ϕϕ(ρ)

ρ
dρ, c6(r̃1, r̃2) =

b

μ
ψ(r̃1, t) + c1(r̃1, r̃2)r̃2

1.

(4.7)

Figures 3 and 4 illustrate the displacement and residual stress fields at the time when the body attains
its initial temperature.
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5. CONCLUSION
The constructed solution permits predicting the level of residual stresses near the line r = R, where

the temperature action is localized, and the dimensions of the irreversible deformation region. If this
solution is applied to the welding processes, then one should note the following: the dimensions of the
irreversible deformation region can only approximately be identified with the thermal influence region,
just as the level of calculated residual stresses. More precise calculations are possible only if we use
the experimentally verified dependence of the yield point on the temperature and take into account the
variations in the elastic constants and the yield strength due to the solid phase transitions in the material
structure. It is the decrease in the values of the Lamé parameters that leads to a decrease in the strength
properties of the material in the region of the welding joint. This problem has not yet been solved exactly.
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