
Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 1

Interfacing the Extended Capabilities Port
Table of Contents

Introduction to the Extended Capabilities Port Page 1
ECP Hardware Properties Page 1
The ECP Handshake Page 2

ECP Forward Data Cycle Page 3
ECP Forward Command Cycle Page 3

ECP Reverse Data Cycle Page 4
ECP Reverse Command Cycle Page 4

EPP Handshake vs SPP Handshake Page 5
RLE – Run Length Encoding Page 5
ECP Software Registers Page 5

ECP's Extended Control Register (ECR) Page 6
ECP's Configuration Register A (cnfgA) Page 7
ECP's Configuration Register B (cnfgB) Page 8

Introduction to the Extended Capabilities Port

The Extended Capabilities Mode was designed by Hewlett Packard and Microsoft to be implemented
as the Extended Capabilities Port Protocol and ISA Interface Standard. This protocol uses additional
hardware to generate hand shaking signals etc just like the EPP mode, thus runs at very much the same
speed than the EPP mode. This mode, however may work better under Windows as it can use DMA
channels to move it's data about. It also uses a FIFO buffer for the sending and/or receiving of data.

Another feature of ECP is a real time data compression. It uses Run Length Encoding (RLE) to
achieve data compression ratio's up to 64:1. This comes is useful with devices such as Scanners and
Printers where a good part of the data is long strings which are repetitive.

The Extended Capabilities Port supports a method of channel addressing. This is not intended to be
used to daisy chain devices up but rather to address multiple devices within one device. Such an
example is many fax machines on the market today which may contain a Parallel Port to interface it to
your computer. The fax machine can be split up into separate devices such as the scanner, modem/Fax
and printer, where each part can be addresses separately, even if the other devices cannot accept data
due to full buffers.

ECP Hardware Properties

While Extended Capabilities Printer Ports use exactly the same D25 connector as your SPP, ECP
assigns different tasks to each of the pins, just like EPP. This means that there is also a different
handshake method when using a ECP interface.

The ECP is backwards compatible to the SPP and EPP. When operating in SPP mode, the individual
lines operate in exactly the same fashion than the SPP and thus are labelled Strobe, Auto Linefeed, Init,
Busy etc. When operating in EPP mode, the pins function according to the method described in the EPP
protocol and have a different method of hand shaking. When the port is operating in ECP mode, then the
following labels are assigned to each pin.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 2

Pin SPP Signal ECP Signal Direct’n Function

1 Strobe HostCLK Out A low on this line indicates, that there is valid
data at the host. When this pin is de-asserted,
the +ve clock edge should be used to shift the
data into the device.

2-9 Data 0-7 Data 0-7 In/Out Data Bus. Bi-directional

10 Ack PeriphCLK In A low on this line indicates, that there is valid
data at the Device. When this pin is de-
asserted, the +ve clock edge should be used
to shift the data into the Host.

11 Busy PeriphAck In When in reverse direction a HIGH indicates
Data, while a LOW indicates a Command
Cycle.
In forward direction, functions as PeriphAck.

12 Paper Out
End

nAckReverse In When Low, Device acknowledges Reverse
Request.

13 Select X-Flag In Extensibility Flag

14 Auto Linefeed Host Ack Out When in forward direction a HIGH indicates
Data, while a LOW indicates a Command
Cycle.
In reverse direction, functions as HostAck.

15 Error    Fault PeriphRequest In A LOW set by the device indicates reverse
data is available.

16 Initialise NReverse

Request

Out A LOW indicates data is in reverse direction.

17 Select Printer 1284 Active Out A HIGH indicates Host is in 1284 Transfer
Mode. Taken low to terminate.

18-25 Ground Ground GND Ground.

Table 1. Pin Assignments For Extended Capabilities Parallel Port Connector.

The HostAck and PeriphAck lines indicate whether the signals on the data line are data or a command. If these
lines are high then data is placed on the data lines (Pins 2-7). If a command cycle is taking place then the
appropriate line will be low, i.e. if the host is sending a command, then HostAck will be low or if the
device/peripheral is sending a command the PeriphAck line will be low.

A command cycle can be one of two things, either a RLE count or an address. This is determined by the bit 7
(MSB) of the data lines, i.e. pin 9. If bit 7 is a 0, then the rest of the data (bits 0-6) is a run length count which is
used with the data compression scheme. However if bit 7 is a 1, then the data present on bits 0 to 6 is a channel
address. With one bit missing this can only be a value from 0 to 127(DEC).

The ECP Handshake

The ECP handshake is different to the SPP handshake. The most obvious difference is that ECP has
the ability at anytime to transmit data in any direction, thus additional signalling is required. Below is the
ECP handshake for both the Forward and Reverse Directions.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 3

ECP Forward Data Cycle

Figure 1. Enhanced Capabilities Port Forward Data Cycle.

1. Data is placed on Data lines by Host.

2. Host then indicates a Data Cycle will
proceed by asserting HostAck.

3. Host indicates valid data by asserting
HostClk low.

4. Peripheral sends its acknowledgment of
valid data by asserting PeriphAck.

5. Host de-asserts HostClk high. +ve edge
used to shift data into the Peripheral.

6. Peripheral sends it's acknowledgment of
the byte via de-asserting PeriphAck.

ECP Forward Command Cycle

Figure 2. Enhanced Capabilities Port Forward Command Cycle.

1. Data is placed on Data lines by Host.

2. Host then indicates a Command cycle will
proceed by de-asserting HostAck.

3. Host indicates valid data by asserting
HostClk low.

4. Peripheral sends its acknowledgment of
valid data by asserting PeriphAck.

5. Host de-asserts HostClk high. +ve edge
used to shift data into the Peripheral.

6. Peripheral sends it's acknowledgment of
the byte via de-asserting PeriphAck.

ECP Forward Data Cycle

HostClk

PeriphAck

HostAck

Data

HostClk

PeriphAck

HostAck

Data

ECP Forward Command Cycle



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 4

ECP Reverse Data Cycle

Figure 3. Enhanced Capabilities Port Reverse Data Cycle.

1. Host sets nReverseRequest Low to
request a reverse channel.

2. Peripheral acknowledges reverse
channel request via asserting
nAckReverse low.

3. Data is placed on data lines by
Peripheral.

4. Data cycle is then selected by
Peripheral via PeriphAck going high.

5. Valid data is indicated by the
Peripheral setting PeriphClk low.

6. Host sends its acknowledgment of
valid data via HostAck going high.

7. Device/Peripheral sets PeriphClk
high. +ve edge used to shift data
into the Host.

8. Host sends it's acknowledgment of
the byte by de-asserting HostAck low.

ECP Reverse Command Cycle

Figure 4. Enhanced Capabilities Port Reverse Command Cycle.

1. Host sets nReverseRequest Low to
request a reverse channel.

2. Peripheral acknowledges reverse
channel request via asserting
nAckReverse low.

3. Data is placed on data lines by
Peripheral.

4. Command cycle is then selected by
Peripheral via PeriphAck going low.

5. Valid data is indicated by the
Peripheral setting PeriphClk low.

6. Host sends its acknowledgment of
valid data via HostAck going high.

7. Device/Peripheral sets PeriphClk
high. +ve edge used to shift data
into the Host.

8. Host sends it's acknowledgment of the
byte by de-asserting HostAck low.

PeriphClk

HostAck

PeriphAck

Data

ECP Reverse Data Cycle

nReverse Request

nAckReverse

PeriphClk

HostAck

PeriphAck

Data

ECP Reverse Command Cycle

nReverse Request

nAckReverse



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 5

EPP Handshake vs SPP Handshake

     If we look back at the SPP handshake you will realise it only has 5 steps,

1. Write the byte to the Data Port

2. Check to see is the printer is busy. If the printer is busy, it will not accept any data, thus any
data which is written will be lost.

3. Take the Strobe (Pin 1) low. This tells the printer that there is the correct data on the data
lines. (Pins 2-9)

4. Put the strobe high again after waiting approximately 5 microseconds after putting the strobe
low. (Step 3)

5. Check for Ack from Peripheral.

and that the ECP handshake has many more steps. This would suggest that ECP would be slower
that SPP. However this is not the case as all of these steps above are controlled by the hardware on
your I/O control. If this handshake was to be implemented via software control then it would be a lot
slower that it's SPP counterpart.

RLE - Run Length Encoding

As briefly discussed earlier, the ECP Protocol includes a Simple Compression Scheme called
Run Length Encoding. It can support a maximum compression ratio of 64:1 and works by sending
repetitive single bytes as a run count and one copy of the byte. The run count determines how many
times the following byte is to be repeated.

For example, if a string of 25 'A's were to be sent, then a run count byte equal to 24 would be
sent first, followed by the byte 'A'. The receiving peripheral on receipt of the Run Length Count,
would expand (Repeat) the next byte a number of times determined via the run count.

The Run Length Byte has to be distinguished from other bytes in the Data Path. It is sent as a
Command to the ECP's Address FIFO Port. Bytes sent to this register can be of two things, a Run
Length Count or an Address. These are distinguished by the MSB, Bit 7. If Bit 7 is Set (1), then the
other 7 bits, bits 0 to 6 is a channel address. If Bit 7 is Reset (0), then the lower 7 bits is a run length
count. By using the MSB, this limits channel Addresses and Run Length Counts to 7 Bits (0 - 127).

ECP Software Registers

The table below shows the registers of the Extended Capabilities Port. The first 3 registers
are exactly the same than with the Standard Parallel Port registers. Note should be taken, however,
of the Enable bi-directional Port bit (bit 5 of the Control Port.) This bit reflects the direction that the
ECP port is currently in, and will effect the FIFO Full and FIFO Empty bits of the ECR Register,
which will be explained later.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 6

Address Port Name Read/Write

Base + 0 Data Port (SPP) Write

ECP Address FIFO (ECP MODE) Read/Write

Base + 1 Status Port (All Modes) Read/Write

Base + 2 Control Port (All Modes) Read/Write

Base + 400h Data FIFO (Parallel Port FIFO Mode) Read/Write

Data FIFO (ECP Mode) Read/Write

Test FIFO (Test Mode) Read/Write

Configuration Register A (Configuration Mode) Read/Write

Base + 401h Configuration Register B (Configuration Mode) Read/Write

Base + 402h Extended Control Register (Used by all modes) Read/Write

Table 2 : ECP Registers

ECP's Extended Control Register (ECR)

The most important register with a Extended Capabilities Parallel Port is the Extended
Control Register (ECR) thus we will target it's operation first. This register sets up the mode in which
the ECP will run, plus gives status of the ECP's FIFO among other things. You will find the contents
of this register below, in more detail.

Bit Function

7:5  Selects Current Mode of Operation

000 Standard Mode

001 Byte Mode

010 Parallel Port FIFO Mode

011 ECP FIFO Mode

100 EPP Mode

101 Reserved

110 FIFO Test Mode

111 Configuration Mode

4  ECP Interrupt Bit

3  DMA Enable Bit

2  ECP Service Bit

1  FIFO Full

0  FIFO Empty

Table 3 ECR - Extended Control Register

The three MSB of the Extended Control Register selects the mode of operation. There are 7
possible modes of operation, but not all ports will support all modes. The EPP mode is one such
example, not being available on some ports. On the next page is a table of the Modes of Operation.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 7

Modes of Operation

Standard Mode Selecting this mode will cause the ECP port to behave as a
Standard Parallel Port, without Bi-directional functionality.

Byte Mode /
PS/2 Mode

Behaves as a SPP in Bi-directional (Reverse) mode.

Parallel Port
FIFO Mode

In this mode, any data written to the Data FIFO will be sent to
the peripheral using the SPP handshake. The hardware will
generate the handshaking required. Useful with non-ECP
devices such as Printers. You can have some of the features
of ECP like FIFO buffers and hardware generation of
handshaking but with the existing SPP handshake instead of
the ECP handshake.

ECP FIFO
Mode

Standard Mode for ECP use. This mode uses the ECP
Handshake, already described.

EPP Mode /
Reserved

On some chipsets, this mode will enable EPP to be used.
While on others, this mode is still reserved.

Reserved Currently Reserved.

FIFO Test
Mode

While in this mode, any data written to the Test FIFO
Register will be placed into the FIFO and any data read from
the Test FIFO register will be read from the FIFO buffer. The
FIFO Full/Empty Status Bits will reflect their true value, thus
FIFO depth, among other things can be determined in this
mode.

Configuration
Mode

In this mode, the two configuration registers, cnfgA & cnfgB
become available at their designated Register Addresses.

As outlined above, when the port is set to operate in Standard Mode, it will behave just like a
Standard Parallel Port (SPP) with no bi-directional data transfer. If you require bi-directional transfer,
then set the mode to Byte Mode. The Parallel Port FIFO mode and ECP FIFO mode both use
hardware to generate the necessary handshaking signals. The only difference between each mode
is that The Parallel Port FIFO Mode uses SPP handshaking, thus can be used with your SPP printer.
ECP FIFO mode uses ECP handshaking.

The FIFO test mode can be used to test the capacity of the FIFO Buffers as well as to make
sure they function correctly. When in FIFO test mode, any byte which is written to the TEST FIFO
(Base + 400h) is placed into the FIFO buffer and any byte which is read from this register is taken
from the FIFO Buffer. You can use this along with the FIFO Full and FIFO Empty bits of the
Extended Control Register to determine the capacity of the FIFO Buffer. This should normally be
about 16 Bytes deep.

The other Bits of the ECR also play an important role in the operation of the ECP Port. The
ECP Interrupt Bit, (Bit 4) enables the use of Interrupts, while the DMA Enable Bit (Bit 3) enables the
use of Direct Memory Access. The ECP Service Bit (Bit 2) shows if an interrupt request has been
initiated. If so, this bit will be set. Resetting this bit is different with different chips. Some require you
to Reset the Bit, e.g. Write a Zero to it. Others will reset once the Register has been read.

The FIFO Full (Bit 1) and FIFO Empty (Bit 0) show the status of the FIFO Buffer. These bits
are direction dependent, thus note should be taken of the Control Register's Bit 5. If bit 0 (FIFO
Empty) is set, then the FIFO buffer is completely empty. If Bit 1 is set then the FIFO buffer is Full.
Thus, if neither bit 0 or 1 is set, then there is data in FIFO, but is not yet full. These bits can be used
in FIFO Test Mode, to determine the capacity of the FIFO Buffer.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 8

ECP's Configuration Register A (cnfgA)

Configuration Register A is one of two configuration registers which the ECP Port has. These
Configuration Registers are only accessible when the ECP Port is in Configuration Mode. (See
Extended Control Register) CnfgA can be accessed at Base + 400h.

Bit Function

7 1 Interrupts are level triggered

0 Interrupts are edge triggered (Pulses)

6:4 00h Accepts Max. 16 Bit wide words

01h Accepts Max. 8 Bit wide words

02h Accepts Max. 32 Bit wide words

03h:07h Reserved for future expansion

3  Reserved

2  Host Recovery : Pipeline/Transmitter Byte included in FIFO?

0 In forward direction, the 1 byte in the transmitter pipeline
doesn't affect FIFO Full.

1 In forward direction, the 1 byte in the transmitter pipeline is
include as part of FIFO Full.

1:0 Host Recovery : Unsent byte(s) left in FIFO

00 Complete Pword

01 1 Valid Byte

10 2 Valid Bytes

11 3 Valid Bytes

Table 4 ECR - Configuration Register A

Configuration Register A can be read to find out a little more about the ECP Port. The MSB,
shows if the card generates level interrupts or edge triggered interrupts. This will depend upon the
type of bus your card is using. Bits 4 to 6, show the buses width within the card. Some cards only
have a 8 bit data path, while others may have a 32 or 16 bit width. To get maximum efficiency from
your card, the software can read the status of these bits to determine the Maximum Word Size to
output to the port.

The 3 LSB's are used for Host Recovery. In order to recover from an error, the software must
know how many bytes were sent, by determining if there are any bytes left in the FIFO. Some
implementations may include the byte sitting in the transmitter register, waiting to be sent as part of
the FIFO's Full Status, while others may not. Bit 2 determines weather or not this is the case.

The other problem is that the Parallel Ports output is only 8 bits wide, and that you many be
using 16 bit or 32 bit I/O Instructions. If this is the case, then part of your Port Word (Word you sent
to port) may be sent. Therefore Bits 0 and 1 give an indication of the number of valid bytes still left in
the FIFO, so that you can retransmit these.

ECP's Configuration Register B (cnfgB)

Configuration Register B, like Configuration Register A is only available when the ECP Port is
in Configuration Mode. When in this mode, cnfgB resides at Base + 401h. On the next page you will
find the make-up of the cnfgB Register.



Interfacing the Extended Capabilities Parallel Port (ECP) http://www.beyondlogic.org

Interfacing the Extended Capabilities Parallel Port (ECP)  Page 9

Bit(s) Function

7 1 Compress outgoing Data Using RLE

0 Do Not compress Data

6 Interrupt Status - Shows the Current Status of the IRQ Pin

5:3 Selects or Displays Status of Interrupt Request Line.

000 Interrupt Selected Via Jumper

001 IRQ 7

010 IRQ 9

011 IRQ 10

100 IRQ 11

101 IRQ 14

110 IRQ 15

111 IRQ 5

2:0 Selects or Displays Status of the DMA Channel the Printer Card
Uses

000 Uses a Jumpered 8 Bit DMA Channel

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 Uses a Jumpered 16 Bit DMA Channel

101 DMA Channel 5

110 DMA Channel 6

111 DMA Channel 7
Table 5 - Configuration B Register

The Configuration Register B (cnfgB) can be a combination of read/write access. Some ports
may be software configurable, where you can set the IRQ and DMA resources from the register.
Others may be set via BIOS or by using jumpers on the Card, thus are read only.

Bit 7 of the cnfgB Register selects whether to compress outgoing data using RLE (Run
Length Encoding.) When Set, the host will compress the data before sending. When reset, data will
be sent to the peripheral raw (Uncompressed). Bit 6 returns the status of the IRQ pin. This can be
used to diagnose conflicts as it will not only reflect the status of the Parallel Ports IRQ, but and other
device using this IRQ.

Bits 5 to 3 give status of about the Port's IRQ assignment. Likewise for bits 2 to 0 which give
status of DMA Channel assignment. As mentioned above these fields may be read/write. The
disappearing species of Parallel Cards which have Jumpers may simply show it's resources as
"Jumpered" or it may show the correct Line Numbers. However these of course will be read only.

Copyright 2002 Craig Peacock Craig.Peacock@beyondlogic.org

While every possible effort is made to ensure the information in this document is correct, should you find any errors please report
them to Craig.Peacock@beyondlogic.org


