СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.726

СИНТЕТИЧЕСКИЕ АЛЮМОСИЛИКАТЫ КАЛЬЦИЯ И ИХ СОРБЦИОННЫЕ СВОЙСТВА ПО ОТНОШЕНИЮ К ИОНАМ Sr²⁺

© 2016 г. П. С. Гордиенко^{*, **}, И. А. Шабалин^{*}, А. П. Супонина^{*}, С. Б. Ярусова^{*, **}, В. Г. Курявый ^{*}, В. В. Железнов^{*}, Т. А. Кайдалова^{*}, Д. Х. Шлык^{*}

*Институт химии ДВО РАН, Владивосток **Владивостокский государственный университет экономики и сервиса E-mail: yarusova_10@mail.ru Поступила в редакцию 22.06.2015 г.

В работе представлены данные по сорбционным характеристикам синтетических алюмосиликатов кальция (ACK), полученных в многокомпонентной системе $CaCl_2-AlCl_3-KOH-SiO_2-H_2O$. Приведены изотермы сорбции ионов Sr^{2+} ACK из водных растворов без солевого фона с концентрацией ионов Sr^{2+} от 0.5 до 11.1 ммоль/л при соотношении твердой и жидкой фаз T: X = 1:100. Определены максимальная сорбционная емкость синтетических ACK, коэффициенты межфазного распределения ионов Sr^{2+} при различных соотношениях T: X. Определена степень извлечения ионов Sr^{2+} из растворов с солевым фоном 0.01 моль/л $Ca(NO_3)_2$ и из раствора, имитирующего воды озера-накопителя № 11 ПО "Маяк".

DOI: 10.7868/S0044457X16080092

Долгоживущие изотопы стронция ⁸⁹Sr с периодом полураспада 50.5 суток и ⁹⁰Sr с периодом полураспада 28.9 лет (с энергией β-частиц 0.535 МэВ), образующиеся в результате ядерных реакций деления ядер урана ²³⁵U при нейтронном облучении в атомных реакторах и при ядерных взрывах, относятся к наиболее опасным изотопам при их распространении в биосфере. Это связано с тем, что, попадая в организм человека, химические соединения радиоактивных изотопов стронция даже при низких значениях произведения растворимости приводят к тому, что стронций в результате катионного обмена вытесняет кальций в основном из костных тканей, накапливается в них, что и приводит к постоянному облучению организма [1, 2]. Но не только радиоактивный изотоп стронция оказывает вредное воздействие на биогенные процессы. В случае поступления в организм взрослого человека более 0.8-3 мг стабильного изотопа стронция в сутки развивается так называемый "стронциевый рахит", причиной которого также является накопление стронция в костных тканях [3].

Вопросам очистки почвы, воды от стабильных и радиоактивных изотопов тяжелых металлов, в том числе и от ионов Sr^{2+} , уделяется повышенное внимание со стороны исследователей. Спектр сорбентов природного и синтетического происхождения, применяемых для очистки водных растворов от ионов Sr^{2+} , довольно широк [4–12]. При сорбции ионов Sr^{2+} показана высокая эффективность си-

ликатов кальция различного состава и структуры [13–18], причем эффективные сорбенты этого класса могут быть получены из отходов производств – техногенных месторождений, содержащих соединения кальция и кремния [13, 15, 18]. При широком разнообразии уже исследованных сорбентов, применяемых для сорбции ионов Sr^{2+} , продолжается поиск новых путей синтеза сорбентов, в том числе алюмосиликатов кальция (**ACK**), изучение их структуры, состава, сорбционных свойств. Ранее [19–22] нами были исследованы сорбционные свойства наноструктурированных алюмосиликатов, полученных из водных растворов в системе $AlCl_3-KOH-SiO_2-H_2O$.

Цель настоящего исследования — изучение состава, структуры, морфологии, сорбционных свойств ACK с различным соотношением Al : Si (2:2, 2:6, 2:10), полученных в многокомпонентной системе CaCl₂—AlCl₃—KOH—SiO₂—H₂O, по отношению к ионам Sr²⁺ из водных растворов хлорида стронция без солевого фона и из растворов с разным солевым фоном.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез алюмосиликатов кальция

В качестве исходных веществ для синтеза алюмосиликатов кальция с заданными соотношениями Al : Si, равными 2 : 2, 2 : 6, 2 : 10, использовали CaCl₂, AlCl₃ · 6H₂O, SiO₂ · nH₂O (все квалификации "ч.") и КОН квалификации "ч. д. а.". Исходные компоненты взяты (относительно предполагаемого состава безводного конечного продукта) в стехиометрическом соотношении, соответствующем получению алюмосиликатов состава $CaAl_2Si_2O_8 \cdot mH_2O$ (I), $CaAl_2Si_6O_{16} \cdot mH_2O$ (II), $CaAl_2Si_{10}O_{24} \cdot mH_2O$ (II) согласно реакции:

8KOH +
$$n$$
SiO₂ · k H₂O + CaCl₂ + 2AlCl₃ · 6H₂O +
+ H₂O = CaAl₂Si_nO_{(n + 2)2} · m H₂O + 8KCl + H₂O, (1)
где $n = 2, 6, 10.$

Навеску гидроксида калия растворяли в дистиллированной воде, в полученный раствор, нагретый до 85-95°C, вносили рассчитанное количество диоксида кремния. Раствор выдерживали при постоянном перемешивании до полного растворения диоксида кремния (раствор 1). В отдельном объеме готовили растворы $CaCl_2$ и $AlCl_3 \cdot 6H_2O$, которые затем смешивали с раствором 1. При сливании раствор активно перемешивали и поддерживали температуру в пределах 85-95°С. В результате химической реакции образуется объемный осадок белого цвета. Следует отметить, что уплотнение осадка после синтеза резко замедляется с увеличением содержания SiO₂ в исходной системе. Полученные осадки промывали горячей дистиллированной водой. Промывание считали законченным по отрицательной реакции на хлор-ионы в промывных водах. Осадки отделяли фильтрованием с помощью водоструйного насоса, снабженного воронкой Бюхнера, через фильтр "белая лента". Промытые осадки сушили при 105-110°С в сушильном шкафу в течение 3 сут и хранили в эксикаторе, заполненном подготовленным силикагелем.

Химическое модифицирование алюмосиликатов кальция

Для всех алюмосиликатов характерно химическое модифицирование, связанное с катионным обменом, как в процессе их синтеза, так и при последующей обработке в расплавах или растворах солей при различных температурах. В исследуемой системе CaCl₂-AlCl₃-KOH-SiO₂-H₂O предварительно были получены соли поликремниевой кислоты с заданным соотношением КОН/SiO₂ с последующим их смешиванием с раствором хлоридов кальция и алюминия. В результате катионного обмена в системе устанавливается термодинамическое равновесие, определяемое изменением величины свободной энергии Гиббса, которое равно разности энергий катионов, взаимодействующих с отрицательно заряженным каркасом образовавшегося алюмосиликата, и разности энергий их гидратации в растворе и алюмосиликате [23].

В ходе данной работы были получены и алюмосиликаты из реагентов, взятых в стехиометрическом соотношении согласно уравнению (1) с n = 2, но с последующей термической обработкой в насыщенном растворе хлорида кальция и в дистилляте. Осадки отмывали от хлорида калия и отфильтровывали. В зависимости от термической обработки осадка содержание катионов кальция в алюминате изменялось от 0.3 до 0.5, а калия – от 0.005 до 0.3 моль/л, при этом содержание и соотношение алюминия и кремния соответствовали изначально заданным. Для сорбции ионов Sr²⁺ из этой серии образцов были получены алюмосиликаты с мольным отношением ионов кальция к ионам калия, равным 1.4 (ACK(I¹) и 3.8 (ACK(I²).

Сорбция ионов Sr²⁺

Раствор хлорида стронция с концентрацией ионов Sr^{2+} 40 мг/мл готовили растворением точной навески $SrCl_2 \cdot 6H_2O$ квалификации "ч. д. а." в дистиллированной воде. Из полученного раствора разбавлением готовили серию исходных водных растворов в интервале концентраций ионов Sr^{2+} 0.12–11.1 ммоль/л.

Опыты по сорбции проводили в статических условиях при 20°С. Для получения изотерм сорбции Sr²⁺ из растворов с нулевым солевым фоном в серию пробирок помещали навески сорбента по 0.2 г, заливали их 20 мл водного раствора хлорида стронция с разными начальными концентрациями ионов Sr²⁺ (0.5–11.1 ммоль/л) и перемешивали на магнитной мешалке RT 15 power (IKA WERKE, ФРГ) в течение 3 ч. Затем растворы отделяли от сорбента фильтрованием через бумажный фильтр "белая лента" и определяли в фильтратах концентрацию ионов Sr²⁺, Ca²⁺ и K⁺.

Для исследования зависимости коэффициента распределения стронция (K_d) от соотношения твердой и жидкой фаз (1:40, 1:100, 1:400, 1:1000, 1:2000, 1:5000) при сорбции ионов Sr²⁺ ACK из растворов с нулевым солевым фоном, на фоне 0.01 моль/л Ca(NO₃)₂ и из растворов, имитирующих состав воды озера-накопителя № 11 ПО "Маяк", в серию пробирок помещали навески сорбента соответствующей массы, заливали их 20 мл соответствующего раствора с начальными концентрациями ионов Sr^{2+} в диапазоне от 0.12 до 0.33 ммоль/л (в зависимости от проводимого эксперимента). Для получения данных по сорбции ионов St²⁺ в статических условиях из водных растворов сложного ионного состава были приготовлены растворы, имитирующие состав воды озера-накопителя № 11 ПО "Маяк". Состав раствора, мг/л: Sr²⁺ – 10–12, Ca²⁺ – 100, Mg²⁺ – 75, Na⁺ – 132, K⁺ – 15, $Cl^{-} - 82$, $SO_{4}^{2-} - 650$ [24].

В каждой серии опытов проводили контрольный опыт, когда в качестве раствора использовали дистиллированную воду и сорбент. Сорбционную емкость (*A*_c, моль/г) исследуемых образцов рассчитывали по формуле:

$$A_c = \frac{(C_{\text{\tiny HCX}} - C_p)}{m} V, \qquad (2)$$

где $C_{\text{исх}}$ – исходная концентрация ионов Sr²⁺ в растворе, ммоль/л; C_{p} – равновесная концентрация ионов Sr²⁺ в растворе, ммоль/л; V – объем раствора, л; m – масса сорбента, г.

Степень извлечения ионов (α, %) рассчитывали по формуле:

$$\alpha = \frac{(C_{\text{HCX}} - C_{\text{p}})}{C_{\text{HCX}}} \times 100\%.$$
 (3)

Коэффициент межфазного распределения (*K*_d, мл/г) определяли следующим образом:

$$K_d = \frac{(C_{\text{wcx}} - C_{\text{p}})V}{C_{\text{p}}m}.$$
(4)

Методы анализа

Элементный состав АСК определяли энергодисперсионным рентгенофлуоресцентным методом с использованием спектрометра EDX-800HS (Shimadzu, Япония). Анализ проводили без учета легких элементов с использованием программного обеспечения спектрометра. Относительная погрешность определения составляла ±2%.

Содержание кристаллизационной воды в полученных алюмосиликатах кальция определяли по разнице масс образца, высушенного до постоянной массы при 110°С, и после его отжига до 900°С.

Рентгенограммы образцов снимали на автоматическом дифрактометре D8 ADVANCE с вращением образца в Cu K_{α} -излучении. Рентгенофазовый анализ (**РФА**) проводили с использованием программы поиска EVA с банком порошковых данных PDF-2.

ИК-спектры образцов снимали в области $400-4000 \text{ см}^{-1}$ на Фурье-спектрометре Shimadzu FTIR Prestige-21 при комнатной температуре. Образцы для регистрации растирали в агатовой ступке до мелкодисперсного состояния и в виде суспензии в вазелиновом масле наносили на подложку из стекла KRS-5.

Удельную поверхность образцов ACK определяли методом низкотемпературной адсорбции азота на приборе "Сорбтомер-М".

Морфологические характеристики и элементный состав образцов в локальных объемах изучали с помощью сканирующего электронного микроскопа высокого разрешения Hitachi S5500, снабженного приставкой для сканирующей просвечивающей микроскопии и энергодисперсионным спектрометром Thermo Scientific. Содержание ионов Sr²⁺, Ca²⁺ и K⁺ в фильтратах после сорбции определяли атомно-абсорбционным методом на спектрометре AA-Solaar фирмы Samsung в пламени по аналитическим линиям 460.7, 422.6 и 766.5 нм соответственно. Предел обнаружения ионов в водных растворах составляет (мкг/мл): для стронция — 0.002, для кальция — 0.0005, для калия — 0.002.

Сорбцию стронция из растворов, имитирующих состав воды озера-накопителя № 11 ПО "Маяк", определяли методом радиоактивных индикаторов. Активность растворов, содержащих ⁹⁰Sr, составляла 3 \times 10⁴ Бк/л. Степень очистки определяли по разности концентраций ⁹⁰Sr в растворе до и после сорбщии. В растворе содержание радионуклидов определяли методом β-спектрометрии с использованием жидкосцинтилляционного спектрометра TRI-CARB модели 2910 TR (Германия). Зная соотношение V/m, на основании распределения радионуклидов между твердой и жидкой фазами рассчитывали коэффициент распределения по формуле $K_d = (A_{\pi}/A_{\pi})(V/m)$, где $A_{\rm T}$ и $A_{\rm w}$ – содержание радионуклидов в твердой и жидкой фазах соответственно; V – объем жидкой фазы, мл; m — масса сорбента, г.

Характеристика синтезированных алюмосиликатов калия

Как упоминалось в Экспериментальной части, исходные составы реагентов в системе $CaCl_2$ –AlCl₃–KOH–SiO₂–H₂O были взяты в стехиометрическом соотношении из расчета получения соответствующего алюмосиликата кальция: $CaAl_2Si_2O_8 \cdot mH_2O$ (I), $CaAl_2Si_6O_{16} \cdot mH_2O$ (II), $CaAl_2Si_{10}O_{24} \cdot mH_2O$ (III). Количественное определение элементного состава показало следующее содержание элементов в полученных ACK, мас. % (моль):

Из полученных данных следует, что отношение Al : Si в образцах соответствует заданному (2 : 2; 2 : 6; 2 : 10), но суммарное количество катионов кальция и калия (их суммарный заряд) свидетельствует о том, что состав алюмосиликата кальция не является однофазным. В их составе могут быть как алюмосиликаты, так и силикаты кальция и алюминия. В составе АСК установлено наличие кристаллизационной воды: для ACK(I) – 3H₂O, для ACK(II) и ACK(III) – по 4H₂O.

Рис. 1. Дифрактограммы алюмосиликатов кальция: *I* – ACK(I), *2* – ACK(II), *3* – ACK(III).

Рис. 2. Дифрактограммы алюмосиликатов кальция после отжига при температуре 1100° С в течение 5–6 ч: 1 - ACK(I), $2 - ACK(I^{1})$.

Согласно данным РФА, в составе полученных АСК установили наличие только рентгеноаморфных фаз (рис. 1). Из представленных дифрактограмм следует, что межплоскостное расстояние (d, Å) для алюмосиликатов изменяется в последовательности: I < II < III (3.2200 < 3.5344 < 3.5432), что является косвенным подтверждением образования соединений с различными параметрами элементарной ячейки в зависимости от соотношения Al: Si. На рентгенограммах образцов после их отжига при 920°С в течение 4 ч на фоне аморфного пика в диапазоне углов 15°-35° зарегистрированы пики, относящиеся к гидроксиду алюминия и силикату алюминия Al₂SiO₅. После отжига образцов (независимо от наличия в них щелочного металла) при 1100°С в течение 5-6 ч на рентгенограммах зарегистрированы пики, относящиеся к кристаллической фазе анортита (CaAl₂Si₂O₈) триклинной модификации (с параметрами элементарной ячейки: *a* = $8.173, b = 12.869, c = 14.165, \alpha = 93.13^{\circ}, \beta =$ = 115.913°, γ = 91.261°), и пики, относящиеся к фазе муллита (Al_{2.4}Si_{0.6}O_{4.8}) орторомбической модификации (с параметрами кристаллической ячейки: a = 7.583, b = 7.681, c = 2.6854, $\alpha = \beta = \gamma = 90^{\circ}$) (рис. 2).

На рис. 3 приведены ИК-спектры образцов ACK(I), ACK(II) и ACK(III). Согласно [25–27], интенсивные полосы поглощения в ИК-спектрах в области 850–1100 см⁻¹ относятся к валентным колебаниям связей Si–O–Si и Al–O–Al, а низкочастотные полосы в области 450–600 см⁻¹ – к деформационным колебаниям связей Si–O–Si и Al–O–Si. С увеличением соотношения Si/Al в алюмосиликатах максимум пика поглощения, отнесенного к валентному колебанию Si–O, смещается в область высоких частот: для ACK(I) – 1010.7 см⁻¹, ACK(II) – 1056.99 см⁻¹, ACK(III) – 1064.71 см⁻¹ (рис. 3). Такое смещение может быть следствием возрастания энергии решетки алюмо-

Рис. 3. ИК-спектры образцов АСК: *I* – АСК(I), *2* – АСК(II), *3* – АСК(III). * – пики вазелина.

Рис. 4. Изображения микрочастиц образцов АСК, полученные методом сканирующей электронной микроскопии: а – ACK(I), б – ACK(II), в – ACK(III).

силикатов кальция с увеличением соотношения Si/Al [28]. Наличие воды в АСК подтверждается довольно интенсивным пиком поглощения в области частот 3000–3800 см⁻¹, характерных для валентных колебаний с участием атомов водорода [26]. Полосы поглощения в области 1600 см⁻¹ обусловлены деформационными колебаниями воды.

Удельная поверхность исследуемых образцов АСК (I, II, III), определенная многоточечным методом БЭТ, составила: 83 ± 5.0 , 90 ± 5.0 , $121 \pm 5.0 \text{ m}^2/\text{г}$ соответственно, т.е. с увеличением соотношения Si/Al наблюдается увеличение удельной поверхности синтезированных соединений.

Согласно данным сканирующей электронной микроскопии (рис. 4), морфологических различий между исследуемыми образцами не наблюдается, все они представляют наноструктурированные образования, аналогичные синтетическому алюмосиликату, синтезированному и исследованному в работе [19], имеют многоуровневое пористое строение с размерами пор до сотен нм, а размер блоков — до десятка нм.

Сорбция стронция АСК

На рис. 5 приведены изотермы сорбции ионов Sr^{2+} из растворов хлорида стронция без солевого фона. Как видно из рис. 5, сорбционная емкость снижается от образца I к образцу III. Однако следует отметить, что степень извлечения ионов Sr^{2+} из водных растворов при малой концентрации (до 1 ммоль/л) в пределах ошибки измерений остается постоянной и равной 95–99.7%.

Для оценки сорбционных свойств исследуемых ACK изотермы анализировали в соответствующих координатах уравнения Ленгмюра:

Рис. 5. Изотермы сорбции ионов Sr^{2+} синтетическими алюмосиликатами: 1 - ACK(I), 2 - ACK(II), 3 - ACK(III).

$$\frac{C_{\rm p}}{A_{\rm c}} = \frac{1}{A_{\rm M}k} + \frac{C_{\rm p}}{A_{\rm M}},\tag{I}$$

где $C_{\rm p}$ — равновесная концентрация ионов Sr²⁺ в растворе, ммоль/л; $A_{\rm M}$ — максимальная сорбционная емкость, ммоль/г; k — константа Ленгмюра, л/ммоль.

Найденные параметры уравнения Ленгмюра: для всех образцов k = 2.85 л/ммоль, максимальная сорбционная емкость $A_{\rm M}$ равна для ACK(I) 0.22, для ACK(II) 0.18, для ACK (III) 0.13 ммоль/г.

Из полученных данных можно сделать вывод, что с увеличением в составе алюмосиликата содержания SiO₂ (для ACK(III) соотношение Al : Si = = 2:10) наблюдается незначительное снижение сорбционной емкости.

		=						
№ п/п	Концентрация Sr ²⁺ в исходном растворе, ммоль/л	Равновесная концентрация Sr ²⁺ в растворе, ммоль/л	Концентрация Са ²⁺ после сорбции, ммоль/л	Концентрация К ⁺ после сорбции, ммоль/л	$A_{ m c},$ ммоль/г	Степень извлечения, %		
ACK(I ¹)								
1	0.52	0.01	0.17	1.2	0.05	98.1		
2	1.01	0.08	0.44	1.5	0.1	92.1		
3	2.56	0.72	0.61	1.94	0.18	71.9		
4	5.29	2.62	1.4	2.24	0.2	50.5		
5	9.32	6.16	3.03	2.42	0.3	33.9		
6	H ₂ O	0.006	0.02	0.39				
$ACK(I^2)$								
7	0.52	0.02	0.4	0.57	0.05	96.2		
8	1.01	0.07	0.8	0.75	0.1	93.1		
9	2.56	0.49	1.8	0.98	0.2	81.0		
10	5.29	1.81	3.1	1.13	0.35	65.8		
11	9.32	4.71	4.1	1.34	0.45	49.5		
12	H ₂ O	0.05	0.1	0.29	—	—		
	•							

Таблица 1. Зависимость сорбционной емкости образцов $ACK(I^1, I^2)$ от концентрации ионов Sr^{2+} в растворе (H_2O – контрольные растворы без соли стронция)

Как и для синтетического наноструктурированного алюмосиликата калия [22], время выхода на равновесную концентрацию при сорбции ACK ионов Sr^{2+} из хлоридных растворов при температуре 20°C в статических условиях составляет несколько минут.

Рис. 6. Изотермы сорбции ионов Sr^{2+} : $I - ACK(I^2)$, $2 - ACK(I^1)$.

Данные по сорбции ионов Sr²⁺ алюмосиликатами с различным содержанием ионов кальция и калия $ACK(I^1)$ и $ACK(I^2)$ представлены в табл. 1. Из таблицы следует, что независимо от соотношения ионов кальция и калия в алюмосиликатах кальция степень извлечения ионов Sr²⁺ высокая и составляет при концентрации Sr²⁺ до 1 ммоль/л не менее 92-97%. Сорбционная емкость алюмосиликата с повышенным содержанием ионов кальция (ACK(I^2)) при концентрациях ионов Sr²⁺ в растворе >2.5 ммоль/л больше, чем у АСК(I¹) (рис. 6). Для алюмосиликата с более высоким содержанием ионов калия следует отметить повышенное отношение концентрации вытесненных в раствор ионов калия к концентрации ионов кальция. Установлено, что величина коэффициента распределения K_d при соотношениях Т : Ж, равных 1:40 и 1:100, составляет для АСК(I¹) 176 и 838, для АСК(І²) 176 и 745 мл/г соответственно, т.е. существенных различий не наблюдается. Для алюмосиликатов кальция АСК(І¹), АСК(І²) из раствора, имитирующего состав воды озера-накопителя № 11 ПО "Маяк", при Т : Ж = 1 : 100 степень

СИНТЕТИЧЕСКИЕ АЛЮМОСИЛИКАТЫ КАЛЬЦИЯ

Таблица 2.	Зависимость коэффицие	нта распределения	<i>К</i> _{<i>d</i>} при извлечении	ионов Sr ²⁺	из водных и	солевых рас-
творов ACI	К(I, II, III) от соотношени	я Т : Ж	-			

АСК(I), концентрация Sr 0.31 ммоль/л, для растворов с солевым фоном – 0.32 ммоль/л							
	Без солевого фона			С солевым фоном*			
Т:Ж	равновесная концентрация Sr ²⁺ , ммоль/л	<i>K_d</i> , мл/г	степень извлечения, %	равновесная концентрация Sr ²⁺ , ммоль/л	<i>К_d</i> , мл/г	степень извлечения, %	
1:40	0.018	639	94.2	0.11	74	62.5	
1:100	0.021	1405	93.2	0.16	103	50.0	
1:400	0.047	2249	84.8	0.27	80	15.6	
1:1000	0.095	2232	69.4	0.3	73	6.3	
1:2000	0.131	2552	57.7	0.31	94	3.1	
1:5000	0.19	3017	38.7	_	_	_	
ACK(II), концентрация Sr ²⁺ 0.33 ммоль/л, для растворов с солевым фоном – 0.34 ммоль/л							
1:40	0.001	16348	99.7	0.174	60	48.8	
1:100	0.004	7645	98.8	0.199	72	41.5	
1:400	0.032	3702	90.3	0.254	137	25.3	
1:1000	0.097	2431	70.6	0.291	177	14.4	
1:2000	0.147	2513	55.5	0.298	293	12.4	
1:5000	0.189	3622	42.7	0.296	792	12.9	
АСК(III), концентрация Sr ²⁺ для обоих растворов 0.30 ммоль/л							
1:40	0.001	12477	99.7	0.06	163	80.0	
1:100	0.002	14122	99.3	0.122	147	59.3	
1:400	0.004	27454	98.7	0.212	165	29.3	
1:1000	0.014	20176	95.3	0.259	163	13.7	
1:2000	0.043	11909	85.7	0.268	235	10.7	
1:5000	0.084	13176	72.0	0.295	117	1.7	

ACK(I), концентрация Sr²⁺ 0.31 ммоль/л, для растворов с солевым фоном – 0.32 ммоль/л

* Концентрация Ca(NO₃)₂ – 0.01 моль/л.

извлечения ионов Sr²⁺, определенная методом радиоактивных индикаторов, составила 90–90.5%, а $K_d = 980$, что в два раза выше, чем при извлечении ионов природными алюмосиликатами [24].

Для ACK(I, II, III) данные по зависимости K_d из водных растворов с концентрацией ионов Sr²⁺ в пределах 0.3–0.33 ммоль/л с нулевым солевым фоном и с введением в раствор 0.01 моль/л нитрата кальция Ca(NO₃)₂ представлены в табл. 2. Как видно из таблицы, наличие солевого фона 0.01 моль/л Ca(NO₃)₂ приблизительно в два раза снижает степень извлечения ионов Sr²⁺ при T : $\mathcal{M} =$ = 1 : 100 и в несколько раз при увеличении соотношения T : \mathcal{M} . По величине максимальной сорбционной емкости ACK(III) уступает ACK(I) и ACK(II), но характеризуется более высокими значениями K_d .

В табл. 3 приведены данные по степени извлечения ионов Sr^{2+} ACK(I), ACK(II), ACK(III) из раствора сложного ионного состава, имитирующего состав воды озера-накопителя № 11 ПО "Маяк", а также коэффициенты распределения K_d в зависимости от соотношения Т : Ж при концентрации ионов Sr^{2+} в пределах 0.12–0.14 ммоль/л, рассчитанные по данным измерения концентрации ионов Sr^{2+} атомно-абсорбционным методом до и после сорбции. Как видно из таблицы, при сорбции ионов Sr^{2+} из растворов со сложным солевым составом наблюдается уменьшение степени извлечения

Таблица 3. Зависимость коэффициента распределения K_d при сорбции ионов Sr²⁺ из растворов, имитирующих воды озера-накопителя № 11 ПО "Маяк", ACK(I, II, III) от соотношения T : Ж

№ п/п	Т:Ж	Равновесная концентрация Sr ²⁺ , ммоль/л	<i>К_d,</i> мл/г	Степень извлечения %			
АСК(І), концентрация Sr ²⁺ 0.12 ммоль/л							
1	1:40	0.018	221	85.0			
2	1:100	0.04	206	66.7			
3	1:400	0.079	199	34.2			
4	1:1000	0.06	246	50.0			
5	1:2000	0.114	106	5.0			
АСК(II), концентрация Sr ²⁺ 0.139 ммоль/л							
6	1:40	0.032	132	77.0			
7	1:100	0.052	166	62.6			
8	1:400	0.074	344	46.8			
9	1:1000	0.1	379	28.1			
10	1:2000	0.107	570	23.0			
АСК(III), концентрация Sr ²⁺ 0.144 ммоль/л							
11	1:40	0.019	262	86.8			
12	1:100	0.032	353	77.8			
13	1:400	0.066	471	54.2			
14	1:1000	0.092	559	36.1			
16	1:2000	0.11	671	23.6			

ионов Sr^{2+} , а также величины коэффициентов распределения K_d .

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (Постановление Правительства № 218 от 09.04.2010 г., договор № 02.G25.31.0166 от 01.12.2015 г. между открытым акционерным обществом "Дальневосточный завод "Звезда" и Министерством образования и науки Российской Федерации).

СПИСОК ЛИТЕРАТУРЫ

- 1. Полуэктов Н.С., Мищенко В.Т., Кононенко Л.И., Бельтюкова С.В. Аналитическая химия стронция. М.: Наука, 1978. 223 с.
- Алейникова М.Л., Клименко И.А. Стронций в природных и сбросных водах и способы его извлечения. М.: ВИЭМС, 1980. 23 с.
- Скальный А.В. Химические элементы в физиологии и экологии человека. М.: ИД "ОНИКС 21 век"; Мир, 2004. 216 с.

- *Ngwenya N., Chirwa E.M.N.* // Miner. Eng. 2010. V. 23. P. 463.
- Wei Guan, Jianming Pan, Hongxiang Ou et al. // Chem. Eng. J. 2011. V. 167. P. 215.
- Ghaemi A., Torab-Mostaedi M., Ghannadi-Maragheh M. // J. Hazard. Mater. 2011. V. 190. P. 916.
- Smičiklas I., Onjia A., Raičević S. et al. // J. Hazard. Mater. 2008. V. 152. P. 876.
- Ahmadpour A., Zabihi M., Tahmasbi M., Rohani Bastami T. // J. Hazard. Mater. 2010. V. 182. P. 552.
- Nemes Z., Nagy N.M., Komlósi A., Kónya J. // Appl. Clay Sci. 2006. V. 32. P. 172.
- 10. Missana T., Garcia-Gutierrez M., Alonso U. // Phys. Chem. Earth. 2008. V. 33. P. S156.
- Başçetin E., Atun G. // Appl. Radiat. Isot. 2006. V. 64. P. 957.
- 12. Cho Y., Komarneni S. // Appl. Clay Sci. 2009. V. 44. P. 15.
- Coleman N.J., Brassington D.S., Raza A., Mendham A.P. // Waste Managment. 2006. V. 26. P. 260.
- 14. Shrivastava O.P., Shrivastava R. // Cem. Concr. Res. 2001. V. 31. P. 1251.
- 15. *Акатьева Л.В.* Дис. ... канд. хим. наук. М.: ИОНХ РАН, 2003. 233 с.
- Shrivastava O.P., Verma T. // Adv. Cem. Based Mater. 1995. V. 2. P. 119.
- 17. Tits J., Wieland E., Müller C.J. et al. // J. Colloid Interface Sci. 2006. V. 300. P. 78.
- Ярусова С.Б., Гордиенко П.С., Крысенко Г.Ф., Азарова Ю.А. // Неорган. материалы. 2014. Т. 50. № 6. С. 1.
- Гордиенко П.С., Ярусова С.Б., Буланова С.Б. и др. // Хим. технология. 2013. Т. 14. № 3. С. 185.
- Гордиенко П.С., Шабалин И.А., Ярусова С.Б. Пат. РФ 2516639, МПК В01Ј 20/30; В01Ј 20/16. № 2012138232/05; заявл. 06.09.12; опубл. 20.05.14. Б.И. № 14.
- Гордиенко П.С., Шабалин И.А., Ярусова С.Б. Пат. РФ 2510292, МПК В01Ј 20/30; В01Ј 20/16. № 2012138231/05; заявл. 06.09.12; опубл. 27.03.14. Б.И. № 9.
- Гордиенко П.С., Ярусова С.Б., Шабалин И.А. и др. // Радиохимия. 2014. Т. 56. № 6. С. 518.
- 23. Жданов С.П., Хвощев С.С., Самулевич Н.Н. Синтетические цеолиты. М.: Химия, 1981. 260 с.
- 24. *Баранова О.Ю*. Автореф. дис. ... канд. техн. наук. Екатеринбург, 2006. 19 с.
- 25. Плюснина И.И. Инфракрасные спектры силикатов. М.: Изд-во Моск. ун-та, 1967. 189 с.
- 26. *Накамото К*. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. 410 с.
- 27. Singh B.K., Tomar R., Kumar S. et al. // J. Hazard. Mater. 2010. V. 178. P. 771.
- 28. Костов И. Минералогия. М.: Мир, 1971. 584 с.