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AXIOMATIZABILITY OF FREE S-POSETS

M. A. Pervukhin and A. A. Stepanova UDC 510.67+512.56

Abstract. In this work, we investigate the partially ordered monoids S over which the class of free (over
a poset) S-posets is axiomatizable. Similar questions for S-sets were considered in papers of V. Gould,
S. Bulman-Fleming, and A. A. Stepanova.

The questions of axiomatizability of S-sets were considered in [1, 6, 7, 14]. In [7], V. Gould obtained
the description of monoids S with axiomatizable class of free S-sets. The structure of free (over a set)
S-posets is similar to the structure of free S-sets, namely, free S-posets are isomorphic to the coproduct of
free cyclic S-posets. Thus, the model-theoretic properties of free S-sets are easily transferred in the case
of free S-posets. In particular, as we note in our work, the result of V. Gould about the axiomatizable
class of free S-sets also occurs for the class of free S-posets.

In [10], the concept of an S-poset free over a poset was introduced and the structure of partially
ordered monoids S with a finite number of right ideals and axiomatizable class of S-posets free over
a poset were investigated. The main result of our work is a complete description of partially ordered
monoids S with axiomatizable class of S-posets that are free over a poset.

The authorship of results of the given work is indivisible.

1. Some Information from Model Theory of S-Sets

Let us recall some definitions and facts from the theory of S-sets.
Let S be a monoid with identity 1. The set of the idempotents from S is denoted by E. A structure

〈A;LS〉 of the language LS = {s | s ∈ S} is called a left S-set if for all s, t ∈ S and a ∈ A we have
(1) s(ta) = (st)a;
(2) 1a = a.

A right S-set is defined dually.
A partially ordered monoid (pomonoid) is a monoid S together with a partial order ≤ on S such that

if s, t, u ∈ S and s ≤ t, then us ≤ ut and su ≤ tu. Throughout this paper, S will denote a monoid or
pomonoid, which will be clear from context or specially agreed upon. Let S be a pomonoid. A structure
〈A;L≤

S 〉 of the language L≤
S = {s | s ∈ S} ∪ {≤} is called a left S-poset if for all s, t ∈ S and a, a′ ∈ A we

have
(1) (st)a = s(ta);
(2) 1a = a;
(3) if a ≤ a′, then sa ≤ sa′;
(4) if s ≤ t, then sa ≤ ta.

In this work, we will often use the term S-(po)set to mean a left S-(po)set. We will denote an S-set
〈A;LS〉 and S-poset 〈A;L≤

S 〉 as SA noting each time whether it is an S-set or an S-poset.
A homomorphism of S-posets is an order-preserving homomorphism of the corresponding S-sets.

A substructure of an S-(po)set SA is called an S-sub(po)set of SA. A finitely generated S-sub(po)set of

an S-(po)set SA is an S-(po)set of the form
n⋃

i=1
SSai for some a1, . . . , an ∈ A. A cyclic S-sub(po)set of

an S-(po)set SA is an S-(po)set of the form SSa for some a ∈ S. A coproduct of S-(po)sets SAi (i ∈ I)
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is their disjoint union denoted
∐
i∈I

SAi. The elements x and y of an S-(po)set SA are called connected

(denoted x ∼ y) if there exist n ∈ ω, a0, . . . , an ∈ A, and s1, . . . , sn ∈ S such that x = a0, y = an,
and ai = siai−1 or ai−1 = siai for any i, 1 ≤ i ≤ n. An S-sub(po)set SB of an S-(sub)set SA is called
connected if we have x ∼ y for any x, y ∈ B. It is easy to check that ∼ is a congruence relation on an
S-(po)set SA. The classes of this relation are called connected components of the S-(po)set SA.

Theorem 1.1 ([4,8]). Every S-(po)set SA can uniquely be factorized into a coproduct of connected com-
ponents.

The concepts of free, projective, and strongly flat S-(po)sets will be important for us later on. In
addition to the definitions, we will recall the algebraic characterizations of these concepts.

Let A and B be categories and let F : A → B be a functor. An object a of the category A is called
(left) free over an object b of the category B (by the functor F) (see [5]) if there exists a morphism
u : b → F(a) such that for every object a′ of the category A and every morphism u′ : b → F(a′) there
exists a unique morphism v : a→ a′ such that u′ = F(v) ◦ u.

The category of sets as usual is denoted by SET and the category of poset by POSET. It is clear
that the collection of left S-(po)sets with homomorphisms of left S-(po)sets forms a category, which is
denoted by S-SET (S-POSET). Similarly the category SET-S of right S-(po)sets is defined.

Let F be a forgetful functor from the category S-SET to the category SET. An S-set SF is called
free over a set X if SF as an object of the category S-SET is free over X as an object of the category
SET. If in this definition we replace the category S-SET by the category S-POSET, then we obtain the
definition of an S-poset free over a set X; if furthermore we replace the category SET by the category
POSET, then we obtain the definition of an S-poset free over a poset X. By Fr, Fr<, and Fr� we
denote the class of S-sets that are free over a set, the class of S-posets that are free over a set, and the
class of S-posets that are free over a poset, respectively.

Theorem 1.2 ([8,12]). An S-(po)set SF is free over a set X if and only if SF ∼= ∐
x∈X

SSx, where SSx ∼=
SS for all x ∈ X.

Theorem 1.3 ([10]). An S-poset SF is free over a poset X if and only if SF ∼= ∐
x∈X

SSx, where SSx is
the copy of the S-poset SS and for all s, t ∈ S and x, y ∈ X

sx ≤ ty ⇐⇒ s ≤ t and x ≤ y, (1)

where sx and ty are the copies of the elements s, t ∈ S in Sx and Sy, respectively.

An S-(po)set SA is said to be strongly flat if the functor –⊗SA from the category SET-S (POSET-S)
into the category SET (POSET) preserves equalizers and pullbacks. By SF (SF<) we denote the class
of strongly flat S-(po)sets.

Theorem 1.4 ([13]). An S-set SA is strongly flat if and only if SA satisfies the conditions (P) and (E):
(P) if sx = ty for x, y ∈ A and s, t ∈ S, then there exist z ∈ A and s′, t′ ∈ S such that x = s′z,

y = t′z, and ss′ = tt′;
(E) if sx = tx for x ∈ A and s, t ∈ S, then there exist z ∈ A and s′ ∈ S such that x = s′z and

ss′ = ts′.

A similar result is also true for S-posets.

Theorem 1.5 ([11]). An S-poset SA is strongly flat if and only if SA satisfies the conditions (P<) and
(E<):

(P<) if sx ≤ ty for x, y ∈ A and s, t ∈ S, then there exist z ∈ A and s′, t′ ∈ S such that x = s′z,
y = t′z, and ss′ ≤ tt′;

(E<) if sx ≤ tx for x ∈ A and s, t ∈ S, then there exist z ∈ A and s′ ∈ S such that x = s′z and
ss′ ≤ ts′.
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The following proposition establishes a connection between the conditions (E) and (E<), and it will
be useful for us in the future.

Proposition 1.6 ([10]). If an S-poset SA satisfies the condition (E<), then SA satisfies the condition (E).

An S-(po)set SP is called projective if for any epimorphism π : SA → SB and any homomorphism
ϕ : SP → SB there exists a homomorphism ψ : SP → SA such that ϕ = πψ. By P (P<) we denote
the class of projective S-(po)sets. The following theorem gives us a condition that is equivalent to the
projectivity of an S-(po)set.

Theorem 1.7 ([9, 12]). An S-(po)set SP is projective if and only if SP is isomorphic to a coproduct of
S-(po)sets SSe (e ∈ E).

The concepts of a strongly flat S-(po)set and a projective S-(po)set are associated with the concept
of a perfect (po)monoid.

An S-(po)set SB is called a cover of an S-(po)set SA if there exists an epimorphism f : SB → SA such
that the restriction of f on any proper S-sub(po)set of SB is not an epimorphism. If SB is, in addition,
projective, then SB is a projective cover for SA. A (po)monoid S is left perfect if every S-(po)set SA has
a projective cover.

Theorem 1.8 ([4, 10]). For a (po)monoid S the following conditions are equivalent :
(1) S is left perfect (po)monoid ;
(2) SF = P (SF< = P<).

The next theorem will be useful to us in the future.

Theorem 1.9 ([7]). If S is a left perfect monoid, St1 ⊆ St0, and the S-sets SSt1 and SSt0 are isomorphic,
then St0 = St1.

Let us recall some concepts and facts from model theory and from the model theory of S-sets. Let L
be a first-order language and K be a class of L-structures. A class K is called axiomatizable if there exists
a set Z of axioms of the language L such that for any L-structure A

A ∈ K ⇐⇒ A � Φ for all Φ ∈ Z.

When we will study the axiomatizable classes below, we will frequently use the following theorem.

Theorem 1.10 ([2]). If a class K is axiomatizable, then K is closed under the formation of ultraproducts.

In [7,10], there were described (po)monoids with axiomatizable classes of free, projective, and strongly
flat S-(po)sets. We will give here the results from these papers which will be used further.

For any s, t ∈ S let us define the sets

r(s, t) = {u ∈ S | su = tu}, R(s, t) = {〈u, v〉 ∈ S × S | su = tv},
r<(s, t) = {u ∈ S | su ≤ tu}, R<(s, t) = {〈u, v〉 ∈ S × S | su ≤ tv}.

Theorem 1.11 ([7]). The class SF is axiomatizable if and only if for any s, t ∈ S

(1) the set r(s, t) is empty or finitely generated as a right ideal of S;
(2) the set R(s, t) is empty or finitely generated as an S-subset of the right S-set (S × S)S.

Theorem 1.12 ([7]). The class P is axiomatizable if and only if the class SF is axiomatizable and the
monoid S is left perfect.

For the formulation of an axiomatizability criterion of the class of free S-sets we will need some new
concepts. Let e ∈ E and s, x ∈ S. We say that s = xy is an e-good factorization on x if y /∈ wS for any
w ∈ S such that e = xw and Sw = Se.
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Theorem 1.13 ([7]). The class Fr is axiomatizable if and only if the class P is axiomatizable and the
monoid S satisfies the following condition:

for any e ∈ E \ {1} there exists a finite set T ⊆ S such that any s ∈ S has an
e-good factorization on x for some x ∈ T .

(∗)

From the proof of this theorem (see [7]) we have immediately the following proposition.

Corollary 1.14. Let S be a pomonoid. If the class Fr� is axiomatizable, then the monoid S satisfies
condition (∗).
Theorem 1.15 ([10]). If any ultrapower of an S-poset SS is free over a poset, then the pomonoid S is
left perfect.

Theorem 1.16 ([10]). Let any ultrapower of an S-poset SS be free over a poset. Then for any s, t ∈ S

(1) the set r<(s, t) is empty or finitely generated as a right ideal of S;
(2) the set R(s, t) is empty or finitely generated as an S-subset of the right S-set (S × S)S.

We say that a monoid S has the condition of finite right solutions if

∀ s ∈ S ∃ns ∈ N ∀ t ∈ S |{x ∈ S | sx = t}| ≤ ns.

Proposition 1.17 ([7]). Let S be a monoid. If any ultrapower of the S-set SS is projective, then S
satisfies the condition of finite right solutions.

2. Preliminary Results

In this section, we give the lemmas that will be used for the proof of our crucial result. Some of these
lemmas are of interest in themselves.

Lemma 2.1. Let S be a left perfect pomonoid. Then S is a left perfect monoid.

Proof. Let S be a left perfect pomonoid. By Theorem 1.8, it is enough to prove that SF = P. Let SA be
a strongly flat S-set. We define a relation ≤ on A as follows:

sa ≤ tb ⇐⇒ ∃u ∈ A ∃ s1, s2, t1, t2 ∈ S : a = s1u, b = t1u, ss1u = s2u, tt1u = t2u, s2 ≤ t2, (2)

where a, b ∈ A, s, t ∈ S. We claim that ≤ is a partial order on A. Clearly, ≤ is a reflexive relation.
We will show the transitivity of the relation ≤. Let a, b, c ∈ A and s, t, r ∈ S satisfy sa ≤ tb ≤ rc.

Then there exist u, v ∈ A, s1, s2, t1, t2, t′, t′′, r1, r2 ∈ S such that condition (2) holds and b = t′v, c = r1v,
tt′v = t′′v, rr1v = r2v, and t′′ ≤ r2. Note that t2u = tt1u = tb = tt′v = t′′v. Since SA is strongly
flat, by Theorem 1.4 the S-set SA satisfies condition (P). Hence the equality t2u = t′′v implies that
u = s3w, v = r3w, and t2s3 = t′′r3 for some w ∈ A and s3, r3 ∈ S. Then a = s1s3w, c = r1r3w,
ss1s3w = ss1u = s2u = s2s3w, rr1r3w = rr1v = r2v = r2r3w, and s2s3 ≤ t2s3 = t′′r3 ≤ r2r3. Therefore,
≤ is a transitive relation.

To show the symmetry of the relation ≤, suppose now that sa ≤ tb ≤ sa for a, b ∈ A and s, t ∈ S.
Thus, there exist u, v ∈ A, s1, s2, t1, t2, t′, t′′, r1, r2 ∈ S such that condition (2) holds and b = t′v, a = r1v,
tt′v = t′′v, sr1v = r2v, and t′′ ≤ r2. By condition (P), from the equality t2u = t′′v, which is proved as
above, there follows the existence of w ∈ A and s3, r3 ∈ S such that u = s3w, v = r3w, and t2s3 = t′′r3.
Note that s2s3w = s2u = ss1u = sa = sr1v = r2v = r2r3w. As s2s3w = r2r3w and condition (E) holds,
there exist x ∈ A and t ∈ S such that w = tx and s2s3t = r2r3t. Since s2s3t ≤ t2s3t = t′′r3t ≤ r2r3t,
we have s2s3t = t2s3t and sa = s2s3w = s2s3tx = t2s3tx = t2s3w = t2u = tt1u = tb. Therefore, ≤ is
a symmetric relation.

It is easy to check that for any s, t, u, v ∈ S and a, b ∈ A if u ≤ v and sa ≤ tb, then usa ≤ vtb. Thus,
SA is an S-poset.

Let us show that the S-poset SA satisfies condition (E<). Suppose that sa ≤ ta for some s, t ∈ S and
a ∈ A. Then there exist u ∈ A, s1, s2, t1, t2 ∈ S such that a = s1u = t1u, ss1u = s2u, tt1u = t2u, and
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s2 ≤ t2. Since ss1u = s2u and the S-set SA satisfies condition (E), there exist u1 ∈ A and r1 ∈ S such
that u = r1u1 and ss1r1 = s2r1. As tt1r1u1 = tt1u = t2u = t2r1u1, i.e., tt1r1u1 = t2r1u1, and the S-set SA
satisfies condition (E), we have that there exist u2 ∈ A and r2 ∈ S such that u1 = r2u2 and tt1r1r2 =
t2r1r2. Since s1r1r2u2 = s1r1u1 = s1u = t1u = t1r1u = t1r1r2u2 = t1r1r2u2, i.e., s1r1r2u2 = t1r1r2u2, and
the S-set SA satisfies condition (E), we have that there exist u3 ∈ A and r3 ∈ S such that u2 = r3u3 and
t1r1r2r3 = s1r1r2r3. Hence a = s1r1r2r3u3 and ss1r1r2r3 = s2r1r2r3 ≤ t2r1r2r3 = tt1r1r2r3 = ts1r1r2r3.
Thus, SA satisfies condition (E<).

We claim that SA satisfies condition (P<). Let sa ≤ tb. Then condition (2) holds. The equality
ss1u = s2u together with condition (E) implies the existence of u1 ∈ A and r1 ∈ S such that u = r1u1

and s2r1 = ss1r1. Since t2r1u1 = tt1r1u1 and the S-set SA satisfies condition (E), there exist u2 ∈ A
and r2 ∈ S such that u1 = r2u2 and t2r1r2 = tt1r1r2. Thus, a = s1r1r2u2, b = t1r1r2u2, and ss1r1r2 =
s2r1r2 ≤ t2r1r2 = tt1r1r2.

By Theorem 1.5, the S-poset SA is strongly flat. As S is a left perfect pomonoid then by Theorem 1.8
the S-poset SA is projective. By Theorem 1.7, we deduce that the S-set SA is isomorphic to a coproduct
of the cyclic S-sets generated by idempotents, i.e., SA is a projective S-set.

Let S be a monoid. We will define an equivalence relation H (see [3]) on S as follows:

sHt ⇐⇒ Ss = St and sS = tS,

where s, t ∈ S. By H1 we denote the H-class of the element 1. Note that the set H1 is the group of units
of the monoid S.

Lemma 2.2. If S is a left perfect monoid, t ∈ S, and S = tS, then t ∈ H1.

Proof. Let t ∈ S and S = tS. Then there exists t′ ∈ S such that tt′ = 1. Note that the mapping
ϕ : SS → SSt defined by ϕ(s) = st for any s ∈ S is an isomorphism of S-sets. Indeed, if kt = lt, then
ktt′ = ltt′, i.e., k = l for any k, l ∈ S. Since St ⊆ S, we have by Theorem 1.9 that St = S, i.e., t ∈ H1.

Lemma 2.3. If there are s, t ∈ H1 such that s < t, then there is an ascending chain in a pomonoid S.

Proof. Assume that s, t ∈ H1 and s < t. Since s ∈ H1, there exists an element s−1 ∈ S such that s−1 is
the inverse of s. Let us multiply the inequality s < t by s−1 from the right. Then 1 ≤ ts−1. If 1 = ts−1,
then s = ts−1s = t, a contradiction. Hence 1 < ts−1. Denote ts−1 by r. Then 1 < r. Let us multiply
this inequality by ri (i ∈ ω). We have ri ≤ ri+1. Since H1 is a group, we see that ri ∈ H1 for any i ∈ ω.
If ri = ri+1 for some i ∈ ω, then 1 = ri(ri)−1 = ri+1(ri)−1 = r, that is not so. Thus, we obtain the
ascending chain 1 < r < r2 < r3 < . . . .

Lemma 2.4. Let S be a pomonoid. If for any s, t ∈ S the set r<(s, t) is either empty or finitely generated
as a right ideal of S, and the set R(s, t) is either empty or finitely generated as an S-subset of the right
S-set (S × S)S, then for any s, t ∈ S the set r(s, t) is either empty or finitely generated as a right ideal
of S.

Proof. Let s, t ∈ S and r(s, t) �= ∅. Note that r(s, t) ⊆ r<(s, t) and r(s, t) ⊆ r<(t, s). By assumption,

r<(s, t) =
⋃

x∈X

xS, r<(t, s) =
⋃
y∈Y

yS

for some finite sets X ⊆ S and Y ⊆ S, in particular, sx ≤ tx and ty ≤ sy for any x ∈ X and y ∈ Y .
Furthermore, for any x, y ∈ S we have

R(x, y) =
⋃

〈u,v〉∈Wxy

〈u, v〉S

for some finite set Wxy ∈ S × S, in particular, xu = yv for any 〈u, v〉 ⊆Wxy. For x ∈ X by Ux we denote
a set

{u ∈ S | 〈u, v〉 ∈Wxy for some y ∈ Y and v ∈ S}.
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Let us prove the equality
r(s, t) =

⋃
x∈X

⋃
u∈Ux

xuS.

Suppose that w ∈ r(s, t). From r(s, t) ⊆ r<(s, t) and r(s, t) ⊆ r<(t, s) it follows that w = xw′ = yw′′ for
some x ∈ X, y ∈ Y , w′, w′′ ∈ S and 〈w′, w′′〉 ∈ R(x, y). Hence 〈w′, w′′〉 = 〈u, v〉z for some 〈u, v〉 ∈ Wxy

and z ∈ S. Then w = xuz and w ∈ ⋃
x∈X

⋃
u∈Ux

xuS. Thus, the inclusion

r(s, t) ⊆
⋃

x∈X

⋃
u∈Ux

xuS

is proved.
Let x ∈ X, u ∈ Ux, and w ∈ S. Then xu = yv for some y ∈ Y and v ∈ S. Hence sxu = syv and

txu = tyv. From sx ≤ tx and ty ≤ sy it follows that sxu ≤ txu = tyv ≤ syv = sxu, i.e., sxu = txu.
Thus, sxuw = txuw and xuw ∈ r(s, t). Thus, the inclusion⋃

x∈X

⋃
u∈Ux

xuS ⊆ r(s, t)

is proved.

Lemma 2.5. Let S be pomonoid. If the class Fr� is axiomatizable, then the class Fr is axiomatizable.

Proof. Let the class Fr� be axiomatizable. By Corollary 1.14, the monoid S satisfies the condition (∗).
By Theorem 1.10, any ultrapower of the S-poset SS is a free S-poset over a poset. By Theorem 1.16, for
any s, t ∈ S the set r<(s, t) is either empty or finitely generated as a right ideal of S and the set R(s, t)
is either empty or finitely generated as an S-subset of the right S-set (S × S)S . By Lemma 2.4, for any
s, t ∈ S the set r(s, t) is either empty or finitely generated as a right ideal of S. By Theorem 1.11, the
class SF is axiomatizable. By Theorem 1.15, the pomonoid S is left perfect. Hence by Lemma 2.1 the
monoid S is left perfect too. Thus, by Theorem 1.12 the class P is axiomatizable. Thus, by Theorem 1.13
the class Fr is axiomatizable.

3. Axiomatizability of the Class of Free S-Posets

The following theorem characterizes pomonoids S such that the class of S-posets that are free over
a set is axiomatizable. The proof of this theorem is analogous to the proof of Theorem 1.13 and so we do
not give it here.

Theorem 3.1. The class Fr< is axiomatizable if and only if the class P< is axiomatizable and S satisfies
the following condition:

for any e ∈ E \ {1} there exists a finite set T ⊆ S such that any s ∈ S has an
e-good factorization on x for some x ∈ T .

(∗)

The crucial result of this work is Theorem 3.2, which describes pomonoids S with axiomatizable class
of S-posets that are free over a poset. To formulate the following theorem we need some notations.

Let S be a pomonoid and s, t ∈ S, r ∈ H1. Let us define the following sets:
〈x, y〉 ∈ L1(s, t) ⇐⇒ x is the maximal element of a poset S such that sx ≤ ty;
〈x, y〉 ∈ L2(s, t) ⇐⇒ x is the maximal element of a poset S such that sx < ty and either sx /∈ tS
or ty /∈ sS;
〈x, y〉 ∈ L3(r) ⇐⇒ y �= ry and x is the maximal element of a poset S such that x ≤ ry and x ≤ y.

Theorem 3.2. Let S be a pomonoid. Then the class Fr� is axiomatizable if and only if
(1) the class Fr is axiomatizable;
(2) there are no ascending or descending chains in the poset S;
(3) for any ρ ∈ S × S the set r<(ρ) is either empty or finitely generated as a right ideal of S;
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(4) for any i ∈ {1, 2} and ρ ∈ S × S either the set Li(ρ) is empty or there is a finite set Li
ρ ⊆ Li(ρ)

such that Li(ρ) ⊆
⋃

〈x,y〉∈Li
ρ

〈x, y〉S;

(5) for any s ∈ H1 either the set L3(s) is empty or there is a finite set L3
s ⊆ L3(s) such that

L3(s) ⊆
⋃

〈x,y〉∈L3
s

〈x, y〉S.

Proof. Necessity. Let the class Fr� be axiomatizable. From Lemma 2.5 there follows (1).
Let us prove (2). Assume that there exists an ascending chain a0 < a1 < a2 < · · · < an < . . . in the

poset S. Let D be a nonprincipal ultrafilter on ω. By Theorem 1.10, SS
ω/D ∈ Fr�.

We claim that S · 1̄/D is a connected component of the S-(po)set SS
ω/D, where 1̄(j) = 1 (j ∈ ω).

Let 1̄/D = tc̄/D for some t ∈ S and c̄ ∈ Sω. Since a free S-set is projective, by Proposition 1.17 the set
{x ∈ S | tx = 1} is finite. Hence c̄/D ∈ S · 1̄/D.

Consider ā, āi ∈ Sω, where ā(j) = aj and āi(j) = ai (i, j ∈ ω). It is clear that āi/D < ā/D,
āi/D ∈ S · 1̄/D, and ā/D /∈ S · 1̄/D. Since SS

ω/D ∈ Fr�, we have that there exists an isomorphism
of the connected component of the S-poset SS

ω/D, which contains the element ā/D, into the connected
component SS · 1̄/D. Let b̄/D be the image of the element ā/D under this isomorphism and b̄(j) = b ∈ S
(j ∈ ω). Since āi/D < ā/D (i ∈ ω), by Theorem 1.3 we have that b̄/D < ā/D and āi/D < b̄/D for any
i ∈ ω. Consequently, there exists j ∈ ω such that b < aj and ai < b for any i ∈ ω, i.e., ai < aj for any
i ∈ ω, a contradiction. In the same way, it is proved that there are no descending chains in the poset S.

From Theorem 1.16 there follows (3).
Let us prove (4). Assume that i ∈ {1, 2} and there exists ρ(s, t) ∈ S ×S such that condition (4) does

not hold. Let
{〈xα, yα〉 ∈ Li(ρ) | α < γ}

be a set of minimum cardinality γ such that Li(ρ) ⊆
⋃

α<γ
〈xα, yα〉S. Since γ is infinite, it must be a limit

ordinal. We can assume that
〈xβ , yβ〉 /∈

⋃
α<β

〈xα, yα〉S (3)

for any β < γ. Let D be a nonprincipal ultrafilter on γ. As the class Fr� is axiomatizable, we have
SS

γ/D ∈ Fr�. Let x̄, ȳ ∈ Sγ such that x̄(α) = xα, ȳ(α) = yα (α ∈ γ). Note that sx̄/D ≤ tȳ/D and for
i = 2 either sx̄/D /∈ tSγ/D or tȳ/D /∈ sSγ/D.

Suppose that the elements x̄/D and ȳ/D are in different connected components of the S-poset SS
γ/D.

Since SS
γ/D ∈ Fr�, there exists an isomorphism of the connected component of the S-poset SS

γ/D,
which contains the element x̄/D, into the connected component of the S-poset SS

γ/D, which contains
the element ȳ/D. Let x̄′/D be the image of the element x̄/D under this isomorphism, x̄′(α) = x′α for
any α ∈ γ. Thus, for i = 2 either sx̄′/D /∈ tSγ/D or tȳ/D /∈ sSγ/D. By Theorem 1.3, x̄/D < x̄′/D
and sx̄′/D ≤ tȳ/D. Then sx̄/D < sx̄′/D ≤ tȳ/D. Hence there exists α ∈ γ such that xα < x′α,
sxα < sx′α ≤ tyα and for i = 2 either sx′α /∈ tS or tyα /∈ sS, contradicting the condition 〈xα, yα〉 ∈ Li(ρ).

Let the elements x̄/D and ȳ/D be in the same connected component of the S-poset SS
γ/D. By

Theorem 1.3, there exists an isomorphism of this connected component into the S-poset SS. Let h̄/D be
the inverse image of 1, x̄/D be the inverse image of k ∈ S, and ȳ/D be the inverse image of l ∈ S under
this isomorphism. From the inequality sx̄/D ≤ tȳ/D it follows that sk ≤ tl and for i = 2 either sk /∈ tS
or tl /∈ sS. We will show that 〈k, l〉 ∈ Li(ρ). Suppose k ≤ k′, sk ≤ sk′ ≤ tl and for i = 2 either sk′ /∈ tS
or tl /∈ sS. Let us multiply these inequalities from the right by h̄/D and denote k′h̄/D by x̄′/D. Then
x̄/D ≤ x̄′/D, sx̄/D ≤ sx̄′/D ≤ tȳ/D and for i = 2 either sx̄′/D /∈ tSγ/D or tȳ/D /∈ sSγ/D. Hence

I = {α ∈ γ | xα ≤ x′α, sxα ≤ sx′α ≤ tyα and for i = 2 either sx′α /∈ tS or tyα /∈ sS} ∈ D.

Since 〈xα, yα〉 ∈ Li(ρ) for any α ∈ γ, we have I ⊆ {α < γ | xα = x′α}. Consequently, {α ∈ γ |
xα = x′α} ∈ D and x̄/D = x̄′/D, whence k = k′ and 〈k, l〉 ∈ Li(ρ) ⊆

⋃
α∈γ

〈xα, yα〉S, i.e., 〈k, l〉 = 〈xα, yα〉r
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for some α ∈ γ and r ∈ S. On the other hand, 〈x̄/D, ȳ/D〉 = 〈k, l〉h̄/D. Then there exists β > α such
that 〈xβ , yβ〉 ∈ 〈k, l〉S ⊆ 〈xα, yα〉S, contradicting (3).

Let us prove (5). Suppose that there exists s ∈ H1 such that (5) is not true. As in the proof of (4)
for a set L3(s) we construct the set

{〈xα, yα〉 ∈ L3(s) | α ∈ γ}
such that (3) holds for all β < γ, D is the ultrafilter on γ, and the elements x̄/D and ȳ/D belong to
Sγ/D. Clearly, x̄/D ≤ ȳ/D, x̄/D ≤ sȳ/D, and ȳ/D �= sȳ/D.

Now suppose that the elements x̄/D and ȳ/D are in different connected components of the S-poset
SS

γ/D. Let h̄/D be a generating element of the connected component of the S-poset SS
γ/D that contains

x̄/D and h̄′/D be a generating element of the connected component of the S-poset SS
γ/D that contains

ȳ/D; h̄′(α) = h′α for all α ∈ γ. There is an isomorphism of the S-poset SSh̄/D into the S-poset SSh̄
′/D.

We can assume that h̄′/D is the image of the element h̄/D under this isomorphism. By Theorem 1.3,
h̄/D < h̄′/D, th̄′/D ≤ rh̄′/D = ȳ/D and th̄′/D ≤ srh̄′/D = sȳ/D. Thus, x̄/D < th̄′/D ≤ ȳ/D and
x̄/D < th̄′/D ≤ sȳ/D. Hence there exists α ∈ γ such that xα < th′α, th′α ≤ yα, and th′α ≤ syα,
contradicting the condition 〈xα, yα〉 ∈ L3(s).

Suppose that the elements x̄/D and ȳ/D are in the same connected component of the S-poset SS
γ/D.

By Theorem 1.3, there exists an isomorphism of this connected component into the S-poset SS. Let h̄/D
be the inverse image of 1, x̄/D be the inverse image of k, and ȳ/D be the inverse image of l under
this isomorphism. Since x̄/D ≤ ȳ/D, x̄/D ≤ sȳ/D, and ȳ/D �= sȳ/D, we see that k ≤ l, k ≤ sl,
and l �= sl. We will show that 〈k, l〉 ∈ L3(s). Let k ≤ k′, k′ ≤ l, and k′ ≤ sl. Let us multiply these
inequalities from the right by h̄/D. Then x̄′/D ≤ ȳ/D and x̄′/D ≤ sȳ/D, where x̄′/D = k′h̄/D. Hence
I = {α ∈ γ | xα ≤ x′α, x′α ≤ yα and x′α ≤ syα} ∈ D. Since 〈xα, yα〉 ∈ L3(s) for any α ∈ γ we have
I ⊆ {α < γ | xα = x′α}. Consequently, {α ∈ γ | xα = x′α} ∈ D and x̄/D = x̄′/D, whence k = k′ and
〈k, l〉 ∈ L3(s) ⊆ ⋃

α∈γ
〈xα, yα〉S, i.e., 〈k, l〉 = 〈xα, yα〉r for some α ∈ γ and r ∈ S. On the other hand,

〈x̄/D, ȳ/D〉 = 〈k, l〉h̄/D. We deduce that there exists β > α such that 〈xα, yα〉 ∈ 〈k, l〉S ⊆ 〈xβ , yβ〉S,
contradicting (3).

Sufficiency. Suppose that conditions (1)–(5) of the theorem hold. Let ρ = (s, t) ∈ S×S. If r<(ρ) �= ∅,
then we choose and fix a finite set r̄ρ of generators of r<(ρ). We define a sentence Φr(ρ) of L≤

S as follows:
if r<(ρ) = ∅, then

Φr(ρ) � ∀x ¬(sx ≤ tx),

and, on the other hand, if r<(ρ) �= ∅, we put

Φr(ρ) � ∀x
(
sx ≤ tx→ ∃ z

∨
u∈r̄ρ

x = uz

)
.

Let

αρ(x, y) � sx < ty ∧ (¬∃u (sx = tu) ∨ ¬∃u (ty = su)
)
, γs(x, y) � x ≤ y ∧ x ≤ sy ∧ y �= sy.

We define a sentence ΦL1(ρ) of L≤
S as follows: if L1(ρ) = ∅, then

ΦL1(ρ) � ∀xy ¬(sx ≤ ty),

otherwise, if L1(ρ) �= ∅, we put

ΦL1(ρ) � ∀xy
(
sx ≤ ty

→ ∃ z
(
sz ≤ ty ∧ x ≤ z ∧ ∀ z′ (z ≤ z′ ∧ sz′ ≤ ty → z = z′) ∧ ∃w

∨
〈u,v〉∈L1

ρ

〈z, y〉 = 〈u, v〉w
))

.

763



We define a sentence ΦL2(ρ) of L≤
S as follows: if L2(ρ) = ∅, then

ΦL2(ρ) � ∀xy ¬αρ(x, y),

otherwise, if L2(ρ) �= ∅, we put

ΦL2(ρ) � ∀xy
(
αρ(x, y)

→ ∃ z
(
αρ(z, y) ∧ x ≤ z ∧ ∀ z′ (αρ(z′, y) ∧ z ≤ z′ → z = z′) ∧ ∃w

∨
〈u,v〉∈L2

ρ

〈z, y〉 = 〈u, v〉w
))

.

For any element s ∈ H1 we define a sentence ΦL3(s) of L≤
S as follows: if L3(s) = ∅, then

ΦL3(s) � ∀xy ¬γs(x, y),

otherwise, if L3(s) �= ∅, we put

ΦL3(s) � ∀xy
(
γs(x, y)

→ ∃ z
(
x ≤ z ∧ γs(z, y) ∧ ∀ z′ (z ≤ z′ ∧ γs(z′, y) → z = z′) ∧ ∃w

∨
〈u,v〉∈L3

s

〈z, y〉 = 〈u, v〉w
))

.

Since the class Fr is axiomatizable, there exists a set of axioms for this class. By ΣFr we denote this
set. We claim that

ΣFr� = ΣFr ∪ {Φr(ρ) | ρ ∈ S × S} ∪ {ΦL1(ρ) | ρ ∈ S × S} ∪ {ΦL2 < (ρ) | ρ ∈ S × S} ∪ {ΦL3(s) | s ∈ H1}
axiomatizes the class Fr�.

Suppose first that SA |= ΣFr� . By Theorem 1.1, SA =
∐

x∈X
SAx, where SAx are the connected

components. Let x ∈ X. Since SA |= ΣFr, we have that the S-set SAx is isomorphic to the S-set SS. Fix
hx ∈ Ax and the mapping ϕ : SAx → SS such that SAx = SShx, ϕ(hx) = 1, and ϕ is an isomorphism of
S-sets. We claim that S-posets SShx and SS are isomorphic. It is enough to prove that

shx ≤ thx ⇐⇒ s ≤ t

for any s, t ∈ S. If s ≤ t, then by the definition of an S-poset we have shx ≤ thx. Let shx ≤ thx. Since
SAx � Φr(s, t), there exist u ∈ Shx and r ∈ S such that hx = ru and sr ≤ tr. Since u ∈ Shx, there exists
r′ ∈ S such that u = r′hx. Consequently, hx = rr′hx and ϕ(hx) = ϕ(rr′hx), i.e., 1 = rr′. Let us multiply
the inequality sr ≤ tr by r′ from the right. We have srr′ ≤ trr′. Hence s ≤ t. Thus, the S-posets SShx

and SS are isomorphic.
We note that the relation ≤ on the poset H1 coincides with the relation of equality. Indeed, let

z1 < z2 for some z1, z2 ∈ H1. Then 1 < z2z
−1
1 . We denote z2z

−1
1 by u. Thus, we have a chain

1 < u ≤ u2 ≤ u3 ≤ . . . . If ui = uj for some i, j ∈ ω, j > i, then in view of ui ∈ H1 we have 1 = uj−i,
whence 1 = u, a contradiction. Thus, there is an ascending chain in the poset S, contradicting (2).

Wed define on the set X the relation ≤ in the following way:

x ≤ y ⇐⇒ ∃ z ∈ H1 : hx ≤ zhy

for all x, y ∈ X. Since on the poset H1 the relation ≤ coincides with the relation of equality, we have that
this relation on X is a partial order relation. We claim that SA is an S-poset free over the poset X. Let
h1, h2 ∈ {hx | x ∈ X}, h1 �= h2.

Suppose that h1 < z0h2. We will show that there exists z ∈ H1 such that h1 < zh2 and z ≤ z0.
If z0 ∈ H1, then we suppose that z = z0. Consider z0 /∈ H1. Since the class Fr is axiomatizable, by
Theorem 1.13 the class P is axiomatizable too and by Theorem 1.12 the monoid S is left perfect. Then
by Lemma 2.2 1 /∈ z0S. As SA |= ΦL2(1, z0), we have that there is z1 ∈ S such that z1h2 ≤ z0h2,
h1 < z1h2, and z1 /∈ z0S. If z1 ∈ H1, then we suppose z = z1. Otherwise by SA |= ΦL2(1, z1) we get an
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element z2 ∈ S such that z2h2 ≤ z1h2, h1 < z2h2, and z2 /∈ z1S. If z2 ∈ H1, then we suppose z = z2.
Otherwise we continue this process. As a result we have either an element zi ∈ H1 such that h1 < zih2

or a descending chain z0h2 ≥ z1h2 ≥ z2h2 ≥ . . . , where in view of zi+1 /∈ ziS (i ∈ ω) every inequality is
strict, contradicting (2).

We claim that an element z ∈ H1 for which h1 < zh2 is unique. Assume that there exists z′ ∈ H1

such that h1 < z′h2 and z �= z′. Then h1 < z′z−1(zh2). Since SA |= ΦL3(z
′z−1), we have that there is

z1 ∈ S such that h1 < z1h2, z1 ≤ z, and z1 ≤ z′. Hence, as we noted above, there exists z2 ∈ H1 such that
h1 ≤ z2h2 ≤ z1h2. Hence we have z2 ≤ z and z2 ≤ z′. As z and z′ are the different elements, we have that
either z2 < z or z2 < z′, i.e., on the poset H1 the relation ≤ is not coincide with equality, a contradiction.

Let sh1 < th2. We claim that there exists a unique z ∈ H1 such that h1 ≤ zh2 and szh2 ≤ th2. Since
SA |= ΦL1(s, t), we have that there is z′ ∈ S such that sz′h2 ≤ th2 and h1 ≤ z′h2. As proved above, there
exists a unique z ∈ H1 such that h1 ≤ zh2 ≤ z′h2. Then szh2 ≤ sz′h2 ≤ th2.

Let x ∈ X,
Xx = {y ∈ X | x is comparable with y in the ordering ≤},

and s ∈ S. We denote an element szhy by sy (y ∈ Xx), where z is an element of H1 such that hx is
comparable with zhy. As mentioned above, the element sy is constructed uniquely. Then for all x, y ∈ X
and s, t ∈ S condition (1) of Theorem 1.3 holds, i.e., SA is an S-poset free over the poset X.

Finally, suppose that SA is an S-poset free over the poset X. We claim that SA |= ΣFr� . It is clear
that SA |= ΣFr. By Theorem 1.3, SA =

∐
x∈X

SSx, where SSx are the copies of an S-poset SS. As in

Theorem 1.3, we denote the copies of the elements s ∈ S by sx for all x ∈ S. Thus, condition (1) of
Theorem 1.3 holds. Let ρ = (s, t) and i ∈ {1, 2}. As SS |= Φr(ρ), we have that SA |= Φr(ρ).

We claim that SA |= ΦLi(ρ). Let sk1x ≤ sl1y and for i = 2 either sk /∈ tS or tl /∈ sS, where x, y ∈ X.
By Theorem 1.3, x ≤ y and sk ≤ tl. By assumption (2), there exists a maximal element r in the poset S
such that k ≤ r, sr ≤ tl, and for i = 2 either sr /∈ tS or tl /∈ sS. Then 〈r, l〉 ∈ Li(ρ) and by assumption (4)
〈r, l〉 = 〈x0, y0〉w for some w ∈ S and 〈x0, y0〉 ∈ Li

ρ. Hence k1x ≤ k1y ≤ r1y, 〈r1y, l1y〉 = 〈x0, y0〉w1y, and
for i = 2 either sr /∈ tS or tl /∈ sS. Consequently, SA |= ΦLi(ρ).

Let us claim that SA |= ΦL3(s), where s ∈ H1. Let k1x ≤ l1y and k1x ≤ sl1y for some k, l ∈ S
and x, y ∈ X. By Theorem 1.3, x ≤ y, k ≤ l, and k ≤ sl. By assumption (2), there exists a maximal
element r in the poset S such that k ≤ r, r ≤ l, and r ≤ sl. Then 〈r, l〉 ∈ L3(s) and by assumption (5)
〈r, l〉 = 〈x0, y0〉w for some w ∈ S and 〈x0, y0〉 ∈ L3

s. Hence k1x ≤ k1y ≤ r1y, 〈r1y, l1y〉 = 〈x0, y0〉w1y.
Consequently, SA |= ΦL3(s).

We deduce that SA is a free S-poset over a poset X if and only if SA |= ΣFr� . Thus, the class Fr�
is axiomatizable.
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