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a b s t r a c t 

The adsorption of Pb 2 + from aqueous solutions by sorbents based on calcium silicates, obtained in multi- 

component systems CaCl 2 –Na 2 SiO 3 –H 2 O (sorbent I) and CaSO 4 ·2H 2 O–SiO 2 ·nH 2 O–KOH–H 2 O (sorbent II), 

was studied. Surface area of the two sorbents was found to be 100 and 40 m 

2 /g respectively. The sorption 

capacities of the adsorbent materials were found to be 3.6 l/mmol and 8.4 l/mmol respectively. Character- 

ization of the sorbent materials was carried out. The equilibrium data was fitted in Langmuir’s isotherm 

and the adsorption capacity of the adsorbent materials was determined. The distribution coefficients at 

Pb 2 + ions for the sorbents were determined at different ratios of solid and liquid phases. 

© 2017 Tomsk Polytechnic University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

It is well known that lead and its compounds are highly toxic.

ead is regarded as a poison affecting mainly nervous and vascu-

ar systems and directly blood [1,2] . Lead has been reported to be

oxic to fauna, flora and human beings. Its adverse effects on liv-

ng beings through its application in leaded paints, gasoline, and

any lead-containing products have been documented [3–5] be-

ause of its ill health effects, lead products have been banned in

any countries of the world. The application of lead in gasoline

as prohibited worldwide but it has been regularly used in aero

lane fuels [6–9] . 

Search for efficient and ecologically safe sorbents for extrac-

ion of lead ions, in particular, from aquatic sources is rather

rgent. 

Scientists have reported adsorption of Pb 2 + ions with cal-

ium silicates of various compositions and structure. The authors

3] have reported dependence of reactions of natural and synthetic

obermorite Ca 10 [Si 12 O 31 ](OH) 6 ·8H 2 О, xonotlite Ca 6 [Si 6 O 17 ](OH) 2 
nd wollastonite Ca 6 Si 6 O 18 with salts of heavy metals, including
∗ Corresponding author. 

E-mail address: ysharma.apc@itbhu.ac.in (Y.C. Sharma). 

s  

2  

t  

ttp://dx.doi.org/10.1016/j.reffit.2017.05.002 

405-6537/© 2017 Tomsk Polytechnic University. Published by Elsevier B.V. This is an ope

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ead nitrate, in the range of ions concentration Pb 2 + from 100 to

,0 0 0 mg/l with ratio of solid and liquid phases S:L = 1:400. It was

ound that as a result of lead nitrate’s reaction with the studied

alcium silicates either lead hydroxocarbonate Pb 3 (CO 3 ) 2 (OH) 2 (hy-

rocerussite) or lead carbonate PbCO 3 (cerussite) is formed. This is

cknowledged by X-ray diffraction analysis of samples after they

eact with lead nitrate: calcite contained in initial samples of wol-

astonite and tobermorite, tobermorit disappears. As one of possi-

le mechanisms to form lead hydroxocarbonate, the authors sug-

ested hydrolysis and carbonization of hydrolysis products. 

The authors [10] studied process of cations exchange between

ynthetic 1.1 nm tobermorite and solutions containing Pb 2 + ions in

he range of concentrations of Pb 2 + ions from 100 to 1,800 μg/ml.

s a result, it was concluded that reaction of 1.1 nm tober-

orite with lead salts, compounds with general empirical formula

a 5-x Pb x Si 6 …nH 2 O are formed, where x varies from 0.033 to 0.514.

t was concluded on prospective use of tobermorite, stable in neu-

ral and alkaline media, for ions exchange processes. The process

f extraction of ions Pb 2 + with wollastonite from water solutions

f lead nitrate with ratio of solid and liquid phases S:L = 1:50 was

tudied [11] . The impact of temperature on sorption kinetics at

0, 30 and 40 °C was studied at pH = 6.4 and initial concentra-

ion of Pb 2 + ions 6 mg/l. It was found that as the temperature
n access article under the CC BY-NC-ND license. 
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Table 1 

Synthesis conditions, phase structure and BET surface area of sorbents used for sorption of Pb 2 + ions. 

Sorbent Initial substances and Phase structure BET surface 

synthesis conditions Before heat-treatment After heat-treatment at 900 °С area, m 

2 /g 

I Solutions of sodium silicate Na 2 SiO 3 , CP (silicate 

module SiO 2 /Na 2 O = 1) and calcium chloride 

(CaCl 2 ·2H 2 O content at least 98.3%). Synthesis was 

made at 20 °С . 

Amorphous phase, CaCO 3 CaSiO 3 , CaO 100.0 

II Borogypsum (containing basic components, mass %: 

SiO 2 – 32.2%; CaO – 28.4; SO 3 – 31.3%; Fe 2 O 3 – 2.7%) 

and potassium hydroxide KOH, pro analysi . Synthesis 

was made in autoclave at 1.7 atm. within 2 hours. 

Amorphous phase, SiO 2 , CaCO 3 , CaSO 4 ·2H 2 O CaSiO 3 40.0 
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increases, removal of Pb decreased from 75.5 to 60.0%, which indi-

cated exothermic nature of sorption. The calculated value of energy

of activation of sorption process was 8.730 KJ/mol. The analysis of

sorption isotherms by Langmuir equation has shown that the value

of maximal sorption capacity falls from 0.308 to 0.234 mg/g (from

1.5 ·10 −3 to 1.13 ·10 −3 mmol/g) as the temperature increases. 

The subsequent separation of heavy metals cations [12] from a

series of solutions containing Pb 2 + , Zn 

2 + , Cd 

2 + and Cu 

2 + with cal-

cium hydromonosilicate C–S–H, within the range of initial concen-

trations of Pb 2 + ions from 0.127 to 2.68 g/l was studied. The fol-

lowing sequence of cations separation was identified: Cu 

2 + , Pb 2 + ,
Cd 

2 + . It is reported [13] that the process of Pb 2 + ions sorption

by synthetic xonotlite and wollastonite obtained from two types

of anthropogenic waste – phosphogypsum and silica gel provided

significant results. The studies were made with aqueous solutions

of Pb at pH = 5.0, temperature 25 °C, ratio of solid and liquid phases

S:L = 1:250 within 40 minutes. It was shown that sorption capacity

of the silicates studied as related to Pb 2 + ions is 1.3–1.5 mmol/g

for xonotlite and 0.9–1.0 mmol/g for wollastonite. 

The sorption characteristics of synthetic composite sorbent

based on calcium hydrosilicate C–S–H, amorphous silica dioxide

and calcium carbonate were studied [14] at initial concentrations

10 0–60 0 mg/l, ratio solid/liquid phases S:L = 1:200, pH = 6.0–6.5

and temperature 17 °C for 60 minutes. The maximal sorption ca-

pacity of the sorbent for removal of Pb 2 + ions is 94.43 mg/g

(0.46 mmol/g). Sorption characteristics of nanosize calcium hy-

dromonosilicate C–S–H were studied [15–17] . Its BET surface area

was found to be 462.0 m 

2 /g. Adsorption experiments were made

by taking a ratio of solid/liquid phases, S:L = 1:100, initial concen-

trations of Pb 2 + ions 50 mg/l at room temperature. It was shown

that a complete removal of lead was achieved within 6 min which

indicates that the process of removal is ‘fast’. Such an effect can be

accounted for a large value of BET surface area of calcium hydrosil-

icates and cations exchange of Ca 2 + ions with respective metal

ions. From the review of scientific literature, it may be concluded

that calcium silicates and materials based on them have been at-

tracting attention of researchers for a long time for their applica-

tion as sorbents to treat aquatic media containing heavy metals

ions including Pb 2 + ions. If the chronology of scientific works is

taken into account, it may be seen that the concern for studying

sorption characteristics of those compounds has been catching im-

petus continuously. 

This paper focusses on removal of Pb ions from aqueous solu-

tions by sorbents based on calcium silicates (hereinafter referred to

as silicate sorbents), obtained in multi-component systems CaCl 2 –

Na 2 SiO 3 –H 2 O (sorbent I) and CaSO 4 ·2H 2 O–SiO 2 ·nH 2 O–KOH–H 2 O

(sorbent II), where compounds CaSO 4 ·2H 2 O and SiO 2 ·nH 2 O are

components of boric acid production waste (borogypsum). The sor-

bents are prepared by ‘inexpensive precursors’ and though a de-

tailed ‘cost analysis’ has not been carried out, it is logically under-

stood that the process of removal of Pb on the silicate adsorbents

is economically viable. 
. Experimental 

.1. Synthesis of the adsorbents 

For synthesis of sorbent 1, solutions of sodium silicate

a 2 SiO 3, CP (silicate module SiO 2 /Na 2 O = 1) and calcium chloride

CaCl 2 ·2H 2 O content at least 98.3 %) were prepared in double dis-

illed water and a temperature of 20 °С was maintained during

ynthesis. Second sorbent was prepared from Borogypsum (con-

aining basic components, mass %: SiO 2 – 32.2 %; CaO – 28.4; SO 3 

31.3 %; Fe 2 O 3 – 2.7 %) and potassium hydroxide KOH. The syn-

hesis was carried out in an autoclave at 1.7 atm pressure and the

eaction was carried out for 2 h. The details regarding phase struc-

ure and BET surface area have been given in Table 1 . 

Synthesis conditions, phase structure and BET surface area of

he studied silicate sorbents are listed in Table 1 . 

.2. Adsorption experiments 

Sorption experiments were carried out in batch adsorption

ode with solid/liquid phase ratio 1:10 0 0 and temperature 20 °С .
he experiments were carried out with initial lead concentra-

ions in 0.02 to 9.09 mmol/l range. A fixed amount of adsorbent

as added to Pb solutions of various concentrations (0.02 to 9.09

mol/l range) and the solutions were shaken on a thermostatic

haking unit 358 S type (Poland) at shaking frequency 200 rpm for

 h. As initial concentrations of the solutions were of 10 −3 order,

onic strength of the solutions was maintained at 0.1 M NaClO 4 .

esides, simultaneous experiments were run with borogypsum of

he said structure being the initial raw material to obtain sorbent II

long with the reagents namely calcium carbonate CaCO 3 , and cal-

ium sulfate Са SO 4 ·2 Н2 О. After 3 h the adsorbents were separated

rom solutions by filtering through Whatman filter papers. Resid-

al concentrations of Pb and Ca were determined in the aliquot by

tomic Absorption Spectrophotometer (Thermo Electron, the USA).

.3. Kinetic experiments 

To study the dependency of lead distribution factor (K d ) from

he ratio of solid/liquid phases (1:40, 1:10 0, 1:40 0, 1:1,0 0 0) sorp-

ion of Pb 2 + ions with silicate sorbents, different amounts of ad-

orbent were added to 20 ml solutions of lead of different initial

oncentrations: 0.21 mmol/l (in experiments with sorbent I) and

.13 mmol/l (in experiments with sorbent II). As control experi-

ents, sorbent sample weights were put into vessels with distilled

ater and shaken simultaneously with the studied samples. 

The study effect of pH on removal of Pb 2 + ions, experiments

ere conducted in pH range from 1.2 to 4.4 with solid/liquid ratio

:L = 1:10 0 0 by making a series of solutions. The required value of

H solutions was maintained by adding 0.1N solution NaOH or HCl.
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Table 2 

Parameters of Langmuir equation in sorption of Pb 2 + 

ions with silicate I and II. 

Sorbent k, l ·mmol −1 A m , mmol ·g −1 R 2 

I 3.6 4.3 ± 0.86 0.9809 

II 8.4 2.73 ± 0.546 0.9980 
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To obtain kinetic curves of sorption, sorbents were added in a

eries of beakers, poured with solution of lead chloride and shaken

t various time intervals – from 1 to 60 minutes. The initial con-

entration of Pb 2 + ions was 1.8 mmol/l (in experiments with sor-

ent I) and 1.6 mmol/l (in experiments with sorbent II and bor-

gypsum). S:L ratio was 1:1,0 0 0 (in experiments with sorbent I)

nd 1:40 (in experiments with sorbent II and borogypsum). Via

ertain time spans, solutions were separated from sorbents via fil-

ering and the residual concentration of Pb 2 + ions in aliquot was

etermined. 

Sorption capacity ( Ас , mmol/g) of the samples studies was cal-

ulated using following expression [9] : 

s = 

( C in − C e ) 

m 

· V, (1) 

here С in – initial concentration of Pb 2 + ions in solution, mmol/l;

 e – equilibrium concentration of Pb 2 + ions in solution, mmol/l;

 – solution volume, l; m – sorbent mass, g. 

Degree of extraction of Pb 2 + ions ( α, %) was calculated by the

ormula [8] : 

= 

( C in − C e ) 

C in 
· 100% (2) 

Coefficient of interphase distribution (K d , ml/g) was determined

s follows [8,9] : 

 d = 

( C in − С e ) · V 

C e · m 

(3) 

.4. Characterization of the sorbents 

X-ray patterns of the sorbents were taken by automatic diffrac-

ometer D8 ADVANCE rotating samples in С uK α-radiation. X-ray

iffraction analysis was done using EVA search software with pow-

er databank PDF-2. The quantitative content of calcium carbonate

n initial sorbents (on dry sample weight basis) was found by gas

olumetric method based on measuring gas volume released from

olid sample weights [14] . 

The BET surface area of silicate sorbents was found via low

emperature nitrogen adsorption using Sorbtometer-M device. 

The content of Pb 2 + and Ca 2 + ions in solutions after sorption

as determined by atomic absorption spectrophotometry on two-

ay spectrometer Solaar M6 (Thermo Electron, the USA) by analyti-

al lines 283.3 and 422.6 nm respectively. The limit of finding lead

n water solutions is 0.07 μg/ml, calcium – 0.0 0 05 μg/ml. 

pH of the solutions was measured by pH-meter/ionometer Mul-

itest IPL – 102 with glass electrode ESK – 10601/7, standardized by

uffer solutions. 

. Results and discussion 

.1. Characterization of the adsorbents 

As seen from Table 1 , the phase structure of studied sorbents

s characterized by amorphous phase and crystalline phases of cal-

ium carbonate in calcite modifications (for both the sorbents) and

ragonite (for sorbent I). It was found that the quantity of СаСО3 ,

ound as per Alekseyevskiy et al. [14] , is 20.6% for sorbent I and

2.6% for sorbent II. Besides, in sorbent II, crystalline phases of

uartz and calcium sulfate were identified. After heat-treatment of

he sorbents at 900 °С for 1 h, the diffractograms of both sorbents

isplayed typical diffraction peaks related to triclinic modification

f wollastonite, which evidences transition of amorphous hydrated

alcium silicates into crystalline phase of wollastonite. 
.2. Adsorption studies 

On the basis of experimental data on Pb 2 + ions sorption by

he silicate sorbents, the dependence of sorption capacity on initial

oncentrations of Pb 2 + ions was determined and has been given in

able 1 . For efficient sorbents having high values of sorption ca-

acities, when initial concentrations of ions (C in ) are higher than

quilibrium concentrations (C e ), it is unfeasible to build sorption

sotherm as the dependency of sorption value ( Аs ) on equilibrium

oncentration (C e ). It is because the visibility at which values of

nitial concentrations we have, the respective values of sorption is

ost. 

It is clear from Fig. 1 that at concentrations of Pb 2 + from 3.5

mol/l and higher, some differences have been observed in sorp-

ion capacity of the sorbents and sorption capacity of sorbent I in

elation to Pb 2 + ions is higher than of sorbent II. At concentrations

f Pb 2 + ions in solution under 2.9 mmol/l, sorbents manifested vir-

ually same sorption capacity. 

The experimental data was tried in Freundlich and Langmuir’s

dsorption isotherm equations but the data fitted Langmuir ad-

orption isotherm better. The linearized form of Langmuir isotherm

quation can be written as follows [8] : 

C e 

A s 
= 

1 

A m 

• k 
+ 

C e 

A m 

, 

here С e (mmol/l), equilibrium concentration of Pb 2 + ions in so-

ution, A m 

(mmol/g) maximal sorption capacity and k (l/mmol) is

angmuir constant. 

Linear graphs of dependency С e Аs 
on С e displayed ( Fig. 2 ) ac-

nowledge the reliability of Langmuir’s model to describe the stud-

ed process and allow finding parameters A m 

and k in Langmuir

quation. Values of the parameters have been given in Table 2 . 

.3. Effect of pH 

The dependence of removal of Pb by the adsorbents on pH

alue have been presented in Fig. 3 . It is clear that as pH of the

olution is shifted in the acidic range, sorption capacity of the ad-

orbents decreases. The highest decrease of sorption capacity and

egree of Pb 2 + ions removal is observed for sorbent I ( α falls from

7.3 to 4.9 %) at pH = 1.2. For sorbent II, α falls from 57.0 to 22.0 %.

ecrease of sorption capacity is explained by instability of cal-

ium silicates and carbonates in acidic range of pH. Experimental

ata obtained simultaneously in similar conditions for borogypsum

sed to synthesize sorbent II have shown that within the range of

H from 1.3 to 5.5, the value of borogypsum’s sorption capacity

irtually does not change. 

.4. Kinetic studies 

Kinetic curve of sorption of Pb 2 + ions with silicate sorbent I at

olid/liquid phase ratio 1:1,0 0 0, has been displayed in Fig. 4 . As

een from Fig. 4 , the equilibrium time for the removal of Pb on

orbent I is ∼16 min ( Аe = 1.6 mmol/g). Kinetic data for sorbent II

nd borogypsum, obtained at solid/liquid phase ratio 1:40 showed

hat for those samples, the equilibrium was achieved in less than 1

in and sorption capacity, Аe of sorbent II is 0.64 mmol/g −1 , and

or borogypsum, it was 0.63 mmol/g. High kinetic characteristics



216 S.B. Yarusova et al. / Resource-Efficient Technologies 3 (2017) 213–221 

Fig. 1. Dependencies of sorption capacity of silicate sorbents on initial concentration of ions Pb 2 + : 1 – sorbent I, 2 – sorbent II. 

Fig. 2. Dependencies of С р /A c ration on С р , built in compliance with Langmuir equation at sorption of ions Pb 2 + with sorbent I (1) and sorbent II (2). 
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Fig. 3. Dependencies of degree α of extraction of ions Pb 2 + on рН value with silicate sorbents: 1 – sorbent I, 2 – sorbent II. 

Fig. 4. Kinetic curve of sorption of ions Pb 2 + with silicate sorbent I. 



218 S.B. Yarusova et al. / Resource-Efficient Technologies 3 (2017) 213–221 

Table 3 

Data on dynamics of Ca 2 + ions concentration in filtrates after sorption. 

Experiment Concentration of Concentration of Concentration of 

Pb + 2 in initial Pb + 2 in solution after Са + 2 in solution 

solution, sorption, after sorption, 

mmol/l mmol/l mmol/l 

Sorbent I 

1 0.21 0.003 2.3 

2 1.62 0.0063 2.4 

3 2.91 0.67 3.1 

4 3.71 0.84 3.54 

5 4.35 0.9 3.72 

6 5.57 1.92 3.91 

7 7.2 3.18 3.95 

8 8.75 4.34 4.12 

9 0 (control) − 2.4 

Sorbent II 

1 0.021 0.002 0.72 

2 0.048 0.003 0.9 

3 0.06 0.006 0.98 

4 0.088 0.002 0.83 

5 0.28 0.004 1.2 

6 0.58 0.0043 1.3 

7 0.89 0.003 1.9 

8 1.44 0.025 2.86 

9 2.91 0.79 2.6 

10 3.46 0.96 2.94 

11 6.26 3.53 3.1 

12 9.09 6.73 3.2 

13 0 (control) − 0.68 
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of samples are conditioned by values of the product of solubility

of the compounds formed. 

Table 3 contains the data on dynamics of Ca 2 + ions concentra-

tion in filtrates upon sorption. It is seen from the table that as the

initial concentration of Pb 2 + ions in solution increases, the con-

centration of Ca 2 + ions in filtrates after sorption grows as well.

However, if we compare the change of initial and equilibrium con-

centration of Pb 2 + ions with concentration of Ca 2 + ions which oc-

curred in solution after sorption, it may be concluded that the

process of involvement of Pb 2 + ions in the studied multicompo-

nent systems is related to cations exchange and formation of less-

soluble compounds (Pb 3 (CO 3 ) 2 (OH) 2 , and Pb(OH) 2 ). 

3.5. Mechanism of removal 

To assess the sorption mechanism of Pb 2 + ions with silicate

sorbents, X-ray phase analysis and atomic absorption spectroscopy

were applied. As shown in Table 1 , in the structure of both sor-

bents, besides amorphous phase, calcite phase was present and in

the structure of sorbent II, the quartz and calcium sulfate dihydrate

phases were also present. Thus, the studied sorbents are multicom-

ponent systems and in course of studying sorption mechanism, it

is required to account for possible reaction of lead chloride with

calcium silicate, Са O ·SiO 2 ·nH 2 O, CaCO 3 , SiO 2 and CaSO 4 ·2H 2 O. It

was ascertained by determination of the values of Gibbs free en-

ergy for respective chemical reactions. The values of Gibbs free

energies for the reactions were determined and were found to

be as follows: for interaction of lead chloride with hydrosili-

cate ( �G 

°
х . р = −210.6 KJ/mol), carbonate ( �G 

°
х . р = −194.2 KJ/mol)

and sulfate ( �G 

°
х . р = −188.4 KJ/mol) of calcium forming respec-

tive lead salts. The values showed thermodynamic feasibility of the

reactions. 

Thermodynamic calculations approve the data of X-ray phase

analysis of residual matters after sorption. On sorbent I diffrac-

tograms, crystalline phases Pb СО3 , Pb 3 (CO 3 ) 2 (OH) 2 and Pb(OH) 2 
were identified. Similar results were reported by other workers [3] .

In sorbent II, PbSO 4 and Pb 3 (CO 3 ) 2 (OH) 2 phases were identified

( Fig. 5 ). 
The lead hydrosilicate PbSiO 3 ·nH 2 O formed in reaction of lead

hloride with calcium hydrosilicate is amorphous, it is impossible

o identify it in residual matter by X-ray phase analysis. It was

cknowledged as a result of synthesis and study of so called the

model’ lead silicate from reagents, sodium silicate Na 2 SiO 3 and

bCl 2 . Diffractogram of residual matter obtained as a result of syn-

hesis contains typical diffraction peaks related to hydrocerussite

b 3 (CO 3 ) 2 (OH) 2 and amorphous phase. 

The reaction of cations exchange of lead chloride with sor-

ents components (CaCO 3 (for sorbents I and II) and CaSO 4 ·2H 2 O

for sorbent II) is evidenced by control experiments using reagents

aCO 3 and Са SO 4 ·2 Н2 О (CP qualification) and borogypsum of

hich sorbent II was synthesized ( Figs. 6 and 7 ). 

It is seen from Fig. 1 that borogypsum contributes directly to

orption of Pb 2 + ions to form lead sulfate, PbSO 4 , which is ac-

nowledged by X-ray phase analysis data. In concentrations of

b 2 + ions in solution under 1.4 mmol/l, sorbent II and borogypsum

how the same sorption capacity. In concentrations of Pb 2 + from

.9 mmol/l and higher, sorption capacity of borogypsum related to

b 2 + ions is higher than of sorbent II. Similar results were obtained

or calcium sulfate Са SO 4 ·2 Н2 О (CP qualification). The process of

b 2 + ions sorption [16,17] with natural gypsum was studied, simi-

ar data were obtained and it was concluded on the prospect of ap-

lication of gypsum in treatment of aquatic media from lead ions. 

As seen from Fig. 7 , calcium carbonate also takes part in

b 2 + ions extraction and at concentration of Pb 2 + ions equaling

0.4 mmol/l, the value of sorption capacity CaCO 3 is 0.46 mmol/g. 

Table 4 visually displays the results of X-ray phase analysis of

orbents I and II, borogypsum and control reagents (CaCO 3 and

а SO 4 ·2 Н2 О CP qualification) after sorption of Pb 2 + ions from lead

hloride solution. 

As seen from Table 4 , in the course of Pb 2 + ions sorption, for

orbent I the formation of low-soluble compounds as lead car-

onate and hydroxide is typical and for sorbent II, formation of

ead sulfate and hydroxocarbonate is typical. Lead hydroxocarbon-

te may be formed in both the cases: with interaction of lead chlo-

ide with calcium chloride contained in initial sorbent and with

ydrolysis of PbCl and further by carbonization of the compounds
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Fig. 5. Diffractogram of sorbent II after sorption (initial concentration of ions Pb 2 + − 6.3 mmol/l) 

Table 4 

X-ray phase analysis of sorbents I and II, borogypsum and control reagents (CaCO3 and Са SO4 ·2 Н2 О CP qualification) after sorption of Pb 2 + ions from lead 

chloride solution. 

№ Sorbent Initial concentration of Pb 2 + ions, mmol ·l −1 Phase composition of sample (product of compound solubility) 

1 Sorbent I 2.9 Pb СО3 (7.5 ·10 −14 ), Pb(OH) 2 (5 ·10 −16 ) 

2 Sorbent II 2.9 PbSO 4 (1.6 ·10 −8 ), Pb 3 (CO 3 ) 2 (OH) 2 (3.5 ·10 −46 ), SiO 2 (crystobalite) 

3 Borogypsum 2.9 PbSO 4 , Pb СО3 , CaSO 4 ·2H 2 O 

4 CaCO 3 of CP qualification 7.6 Pb СО3 

5 Са SO 4 ·2 Н2 О of CP qualification 8.6 PbSO 4 
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Fig. 6. Dependencies of sorption capacity of sorbent II and borogypsum on initial concentration of ions Pb 2 + : 1 – borogypsum, 2 – sorbent II (S:L = 1:10 0 0). 

Fig. 7. Dependency of sorption capacity value of calcium carbonate CP qualification on initial concentration of ions Pb 2 + (S:L = 1:100). 
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Table 5 

Distribution coefficients at Pb 2 + ions for sorbents I, II and borogypsum at various 

S:L ratios. 

Ratio of solid and liquid phases (S:L) Кd , ml/g 

Samples 

sorbent I sorbent II borogypsum 

1 :40 3892 2771 587 

1 :100 14616 3513 1049 

1 :400 49633 19221 1243 

1 :10 0 0 62582 22146 1278 
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ormed. As a result of borogypsum and lead chloride interaction,

ead sulfate and carbonate are formed. Lead carbonate formation

n that case relates to microelements in form of calcium contained

n borogypsum, which is not incompletely decayed in the course of

ulfuric acid treatment of datolite concentrate. Reaction of calcium

arbonate and sulfate with lead chloride follows to form lead car-

onate and sulfate respectively. Values of distribution coefficients

K d ) of Pb 2 + ions on sorbents I, II and borogypsum at solid/liquid

hase ratio 1:40, 1:10 0, 1:40 0 and 1:1,0 0 0 are displayed in Table 5 .

From Table 5 , it is seen that the highest values of distribu-

ion factor are observed for all sorbents with solid/liquid ratio

:L = 1:10 0 0. For sorbent I, the highest values of interphase distri-

ution coefficient are typical. Thus, treatment of aqueous solutions

b 2 + ions using the sorbents occurs both as a result of Pb 2 + ions

orption processes, cations exchange mechanism and hydrolysis of

ead salt forming lead hydroxide and as a result of carbonization

f reagents system due to reaction of air with CO 2 forming lead

ydroxocarbonate. 
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