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MAGNETIC SUSCEPTIBILITY OF A DILUTED ISING MAGNET

S. V. Semkin,∗ V. P. Smagin,∗ and E. G. Gusev∗

For the Ising model with nonmagnetic dilution, we consider a method for constructing the “pseudochaotic”

impurity distribution based on the condition that the position correlation of movable impurity atoms

in neighboring sites vanishes. For the one-dimensional Ising model with nonmagnetic dilution, we find

the exact solution and show that the pseudochaotic approximation method gives the exact value of the

magnetic susceptibility for this model in a zero external field. We assume that the pseudochaotic impurity

distribution is completely uncorrelated in the region of zero magnetization for any lattice. This assumption

is based on calculating the correlation functions for the Ising model with nonmagnetic dilution on the Bethe

lattice. We find the magnetic susceptibility for that model.
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1. Introduction

In most cases, a good approximation for describing a diluted magnet is the assumption of a random

distribution of nonmagnetic impurities among the lattice sites [1], [2]. Therefore, in theoretical papers

devoted to studying diluted magnets, a random impurity distribution, as a rule, is introduced at the

beginning.

Here, we propose a somewhat different approach to analyzing the properties of diluted magnets. Instead

of initially assuming that impurities are randomly distributed in the lattice, we consider a magnet in which

the magnetic atoms and impurity atoms can interchange and are in thermodynamic equilibrium. The

energy of such system is determined not only by the orientation of the magnetic moments but also by

the distribution of the impurity atoms among the lattice sites. In other words, the Hamiltonian of one or

another model of a magnet with movable impurities comprises terms related to the exchange interaction of

the magnetic atoms and terms related to the interatomic interaction in the crystal lattice, in which case the

equilibrium distribution of the impurity atoms depends on the parameters characterizing these interactions.

For each value of the temperature, external magnetic field, and concentration (fraction) of magnetic atoms

in the system, we can then find the parameters of the interatomic interaction such that the equilibrium

distribution of impurity atoms is as nearly as possible random. In [3], we applied this method to the Potters

model with nonmagnetic dilution on the Bethe lattice.

Here, we realize this approach as follows. We consider the Ising model on a lattice with the coordination

number q. We assume that some of the magnetic atoms are replaced with impurity atoms, which can
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move through the lattice sites and are in thermodynamic equilibrium. We first we choose an interatomic

interaction potential for which, in our opinion, the equilibrium distribution of nonmagnetic impurities is

nearly random; we say that such a distribution is pseudochaotic. To demonstrate the effectiveness of the

pseudochaotic approximation, we consider the one-dimensional Ising model with a random distribution

of immobile nonmagnetic impurities. For this model, we obtain the exact solution, which we compare

with the solution found with the pseudochaotic approximation. Based on the results of this comparison, we

assume that the pseudochaotic distribution with zero magnetization is equivalent to the totally uncorrelated

positions of impurity atoms. Further considering the Ising model with nonmagnetic dilution on an arbitrary

Bethe lattice, we find an expression for the magnetic susceptibility with zero magnetization, which we regard

as an exact result for this model based on our assumption.

2. Pseudochaotic approximation

We formulate the Ising model with movable nonmagnetic impurities on an arbitrary crystal lattice. We

consider a crystal lattice with the coordination number q, in whose sites both magnetic and nonmagnetic

atoms can be placed (respectively atoms of the first and second types). Each magnetic atom is related to

the Ising spin si = ±1 such that the energy of the exchange interaction of two magnetic atoms with the

spins si and sj is −Jsisj if the atoms are in neighboring lattice sites and is zero otherwise.

Similarly to what is accepted in studying binary alloys [4], we assume that there are interatomic

forces in the system with an interaction potential of the Lennard-Jones type rapidly decreasing over large

distances [4]. Therefore, we assume that the action radios of these forces is restricted to the first coordination

sphere; for brevity in what follows, we call them “Coulomb” forces, although, strictly speaking, they have

a different nature. We let −Uαβ, α, β = 1, 2 denote the potential of these forces. If we now associate

each lattice site with the variable σi equal to si if a magnetic atom is in this site and zero if the atom is

nonmagnetic, then the energy Eex of the exchange interaction and the Coulomb energy EK can be written

as sums over all ordered pairs of neighboring sites:

Eex = −
∑

(i,j)

Jσiσj ,

EK = −
∑

(i,j)

{
U11σ

2
i σ

2
j + U22(1 − σ2

i )(1 − σ2
j ) + U12[σ

2
i (1− σ2

j ) + σ2
j (1 − σ2

i )]
}
.

The last expression up to an additive constant can be written as

EK = −
∑

(i,j)

Uσ2
i σ

2
j −

∑

i

fσ2
i ,

where U = U11 + U22 − 2U12 and f = q(U12 −U22). We call U the effective Coulomb interaction potential;

the magnetic atoms attract each other if U > 0 and repel each other if U < 0.

Taking into account that the number of magnetic atoms on the lattice equals
∑

i σ
2
i , we write the grand

partition function of the system as

Z =
∑

{σ}

exp

{
1

kT

(∑

(i,j)

(Jσiσj + Uσ2
i σ

2
j ) + (f + µ)

∑

i

σ2
i +He

∑

i

σi

)}
, (1)

where µ is the chemical potential, He is the external magnetic field, k is the Boltzmann constant, and the

sum is over all possible configurations {σ}.
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We introduce the quantities b = 〈σ2
i 〉 and M = 〈σi〉/b, where the angle brackets denote the ensemble

average. Clearly, these quantities are independent of i because all lattice sites are equivalent (in the

thermodynamic limit) and have a simple meaning: b is the probability for a magnetic atom to be at the

given site (concentration), and M is the mean value of its spin. For such a model, we can define several

types of correlation functions characterizing the relations between magnetic moments and relations between

impurity atom positions. We introduce the positional correlation function (characterizing distribution of

impurity atoms)

gbij = 〈σ2
i σ

2
j 〉 − b2.

If impurities are distributed completely randomly and independently among the lattice sites, then 〈σ2
i σ

2
j 〉 =

〈σ2
i 〉〈σ

2
j 〉 = b2 and gbij = 0 for any i and j. If gbij = 0 for any i and j, then we say that the impurity

distribution is uncorrelated. Strictly speaking, uncorrelated impurities does not mean (although it does

not exclude) that their distribution is completely random, because not only pairwise covariations but also

triple, quadruple ones, and so on must equal zero for a completely random distribution.

For the Ising model with movable impurities, the positional correlation function depends on the effective

Coulomb interaction potential U together with the temperature T and external fieldHe. Instead of regarding

U as a constant, we now find the value of U for each values of T and He such that the equality gb12 = 0

holds, i.e., the impurity positions in two neighboring sites of the lattice are uncorrelated. We call the

impurity distribution satisfying this condition the pseudochaotic distribution, and the calculations for this

distribution the pseudochaotic approximation. As shown below, the condition gb12 = 0 in some cases leads

to the positional correlation function vanishing at any distance.

3. One-dimensional chain with dilution: Exact solution

We consider a one-dimensional Ising magnet (chain), where some magnetic atoms are replaced with

nonmagnetic impurities such that the probability to find a magnetic atom at any site of the chain equals

b and the probability to find an impurity at the same site equals 1 − b. With such a dilution, the chain

is broken into segments of different lengths consisting of magnetic atoms with the segments separated by

nonmagnetic impurities. The mean value of the Ising spin for one magnetic atom can be calculated as

M =

∞∑

n=1

mnpn, (2)

wheremn is the mean magnetization of the atom belonging to a segment of length n and pn is the probability

that an arbitrary magnetic atom belongs to such segment. Obviously, pn = nbn−1(1− b)2. We calculate

the magnetization mn as follows. Let Zn be the partition function for a segment of n Ising spins s1, . . . , sn,

Zn =
∑

σ1,...,σn

exp

(
K

n−1∑

i=1

sisi+1 + h

n∑

i=1

si

)
,

where K = J/kT and h = He/kT . In Zn, we select the sum over the last spin sn of a given segment:

Zn = Fn(+1) + Fn(−1),

where

Fn(sn) =
∑

s1,...,sn−1

exp

(
K

n−1∑

i=1

sisi+1 + h

n∑

i=1

si

)
.
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Then

mn =
1

n

∂

∂h
logZn =

1

n

Fn,h(+1) + Fn,h(−1)

Fn(+1) + Fn(−1)
, (3)

where Fn,h(s) is the derivative of Fn(s) with respect to h. For the functions Fn(±1) and their derivatives,

we can construct the recurrence relations

Fn+1(s) =
∑

s′=±1

Fn(s
′)eKss′+hs = Fn(+1)eKs+hs + Fn(−1)e−Ks+hs,

Fn+1,h(s) =
(
Fn,h(+1) + sFn(+1)

)
eKs+hs +

(
Fn,h(−1) + sFn(−1)

)
e−Ks+hs,

F1(+1) = F1,h(+1) = eh, F1(−1) = e−h, F1,h(−1) = −e−h.

Introducing the notation

xn =
Fn(−1)

Fn(+1)
, yn =

Fn,h(+1)

Fn(+1)
, zn =

Fn,h(−1)

Fn(+1)
,

we obtain the expression

mn =
1

n

yn + zn
1 + xn

and the recurrence relations

xn+1 =
e−2K + xn

1 + xne−2K
e−2h, yn+1 =

yn + zne
−2K

1 + xne−2K
+ 1,

zn+1 =
zn + yne

−2K

1 + xne−2K
e−2h − xn+1,

x1 = e−2h, y1 = 1, z1 = −e−2h.

The magnetization M given by formula (2) can be represented by a power series in the concentration b of

magnetic atoms,

M = m1 + 2(m2 −m1)b +

∞∑

k=2

(
(k + 1)mk+1 − 2kmk + (k − 1)mk−1

)
bk,

whence we can find the derivatives ∂kM/∂bk at b = 0. In particular,

∂M

∂b

∣∣∣∣
b=0

= 2(m2 −m1) = 2

(
sinh(2h)

cosh(2h) + e−2K
− tanhh

)
. (4)

From relation (2), we obtain the magnetic susceptibility χ = ∂M/∂h:

χ =

∞∑

n=1

χnpn, χn =
1

n

Fn,hh(+1) + Fn,hh(−1)

Fn(+1) + Fn(−1)
− nm2

n. (5)

Here, Fn,hh(s) are the second derivatives of the function Fn(s) with respect to h; recurrence relations can

also be constructed for them. If the external field h = 0, then it follows from these recurrence relations

that Fn(−1) = Fn(+1), Fn,h(−1) = −Fn,h(+1), and Fn,hh(−1) = Fn,hh(+1) for any n. Introducing the
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notation tn = Fn,hh(+1)/Fn(+1) and wn = Fn,h(+1)/Fn(+1), we derive the relation for χn and recurrence

relations for tn and wn:

χn =
tn
n
, tn+1 = 1 + tn + 2wn tanhK, wn+1 = 1 + wn tanhK, t1 = w1 = 1.

It follows from the recurrence relation for wn and the initial condition w1 = 1 that

wn =

n−1∑

i=0

(tanhK)
i
=

1− (tanhK)
n

1− tanhK
.

Using this result in the recurrence relation for tn, we obtain

tn = n
1 + tanhK

1− tanhK
−

2 tanhK

(1− tanhK)
2 (1− (tanhK)

n
).

Substituting χn = tn/n in (5) and summing the power series, we finally obtain

χ =
1 + b tanhK

1− b tanhK
. (6)

4. One-dimensional chain with dilution: Pseudochaotic

approximation

We now consider the one-dimensional Ising model with nonmagnetic impurities in the pseudochaotic

approximation. We write partition function (1) for the one-dimensional chain consisting of N sites in the

form

ZN =
∑

{σ}

exp

{ N∑

i=1

(Kσiσi+1 + Lσ2
i σ

2
i+1 + rσ2

i + hσi)

}
, (7)

where r = µ/kT , L = U/kT , and we use the cyclic boundary condition σ1 = σN+1. Calculating partition

function (7) one way or another, we can find the chemical potential, the spontaneous magnetization, and

the mean 〈σ2
i σ

2
i+1〉 using the relations

bM =
1

N

∂ logZN

∂h
, b =

1

N

∂ logZN

∂r
, 〈σ2

i σ
2
i+1〉 =

1

N

∂ logZN

∂L
. (8)

Passing to the limit N → ∞, we obtain a system from which we can obtain the magnetization and chemical

potential as functions of the parameters K, L, b, and h. Eliminating the Coulomb interaction parameter L

using the uncorrelation conditions for the positions of magnetic atoms in neighboring sites,

〈σ2
i σ

2
i+1〉 − b2 = 0,

which is the main point of the pseudochaotic approximation, we now obtain [5]

Ma = tanh(2x− h), b =
tanh(2x− h)− tanhx

sinh(2x)
cosh(2x)+e−2K − tanhx

, (9)

where x varies from x1 = h to x2 = (h+ 2K)/2 + (1/2) log(sinh h+
√
sinh2h+ e−4K ).

At h = 0, the magnetization Ma vanishes for any value of the concentration b, as does exact magneti-

zation value (2). For b = 0 and for b = 1 (i.e., for the paramagnetic and for the chain without dilution), the

magnetization Ma calculated using pseudochaotic approximation (9) coincides with exact magnetization

value (2). The derivatives of the magnetization Ma with respect to the magnetic atom concentration b

calculated using (9) with b = 0 and with b = 1 also coincide with the corresponding derivatives of the exact

solution. In addition, it is easy to show that the susceptibility χ = ∂Ma/∂h calculated using (9) at h = 0

exactly coincides with susceptibility (6) found above for the exact solution. But there is still no complete

match between the exact magnetization value and the approximate magnetization value calculated using

pseudochaotic approximation (9) for all values of K, h, and b. Nevertheless, as our calculations show, the

relative difference (Ma −M)/M does not exceed 10−5 to 10−4 in absolute value.
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5. Correlations in a chain with movable nonmagnetic impurities

To study the difference between the pseudochaotic approximation and the exact solution in more detail,

we consider the correlation of magnetic atom positions not only at neighboring sites but at any two sites

of the one-dimensional chain. This correlation can be calculated from partition function (7) both for an

arbitrary value of L and in particular for L corresponding to the pseudochaotic distribution. We find the

correlations in the chain of Ising spins with movable nonmagnetic impurities for an arbitrary value of L.

For this, we can use the following method [4]. We consider the transfer matrix V,

V =




1 e(r+h)/2 e(r−h)/2

e(r+h)/2 eK+L+r+h e−K+L+r

e(r−h)/2 e−K+L+r eK+L+r−h


 . (10)

If λ1, λ2, and λ3 are the eigenvalues of matrix (10), then partition function (7) equals ZN = λN
1 +λN

2 +λN
3 .

Let λ1 be the maximum eigenvalue of V. In the thermodynamic limit N → ∞, we then have

bMm =
∂ logλ1

∂h
, b =

∂ logλ1

∂r
. (11)

The eigenvalues of matrix (10) can be found from the characteristic equation

λ3 +Aλ2 +Bλ+ C = 0, (12)

where

A = −
(
1 + 2e(1+γ)K+r coshh

)
,

B = 2
(
e2(γK+r) sinh(2K) + (e(1+γ)K − 1)er coshh

)
,

C = −4eγK+2r
(
eγK coshK − 1

)
sinhK, γ =

L

K
=

U

J
.

Solving Eq. (12) either numerically or using the Cardano formulas and calculating λ1, we can by virtue

of relation (11) define the dependence of the magnetization Mm on b and h for any value of γ, in particular,

for a value that corresponds to the pseudochaotic distribution of impurities; in this case Mm = Ma.

We define the correlation functions for the Ising model with movable impurities. As noted above,

we call the covariation gbij = 〈σ2
i σ

2
j 〉 − b2 of the quantities σ2

i and σ2
j (their means equal the magnetic

atom concentration b), which we regard as a function of the distance between these sites, the positional

correlation function. We call the covariation gmb
ij = 〈σiσj〉 − b2M2 of the quantities σi and σj themselves

the magnetic-positional correlation function because it characterizes the relation between positions and

magnetic moments of atoms. We consider the calculation of these correlation functions for a linear chain:

〈σ2
i σ

2
j 〉 =

1

ZN

∑

{σ}

V (σ1, σ2) · · ·V (σi−1, σi)σ
2
i V (σi, σi+1) · · ·V (σj−1, σj)σ

2
jV (σj , σj+1) · · ·V (σN , σ1), (13)

where

V (σi, σi+1) = exp

{
Kσiσi+1 + Lσ2

i σ
2
i+1 + r

σ2
i + σ2

i+1

2
+ h

σi + σi+1

2

}

is the transfer matrix element.
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We introduce the matrix S = diag(0, 1, 1) and write equality (13) in the form

〈σ2
i σ

2
j 〉 =

1

ZN
Tr

{
Vi−1SVj−iVN−j+1

}
. (14)

To calculate the trace in the right-hand side of (14), we consider the orthogonal matrix P transforming the

symmetric transfer matrix V to the diagonal form: P−1VP = diag(λ1, λ2, λ3). We can then write (14) as

〈σ2
i σ

2
j 〉 =

1

ZN
Tr

{
diag(λi−1

1 , λi−1
2 , λi−1

3 ) · S̃×

× diag(λj−1
1 , λj−1

2 , λj−1
3 ) · S̃ · diag(λN−j+1

1 , λN−j+1
2 , λN−j+1

3 )
}
, (15)

where S̃ = P−1SP. Taking ZN = λN
1 + λN

2 + λN
3 into account and passing to the limit N → ∞, we obtain

〈σ2
i σ

2
j 〉 =

1

λj−1
1

Tr
{
diag(λi−1

1 , λi−1
2 , λi−1

3 ) · S̃ · diag(λj−1
1 , λj−1

2 , λj−1
3 ) · S̃ · diag(1, 0, 0)

}
.

Expressing correlation function (13) in terms of the elements of the matrix S̃, we obtain

〈σ2
i σ

2
j 〉 = s̃211 + s̃12s̃21

(
λ2

λ1

)
j−i

+ s̃13s̃31

(
λ3

λ1

)
j−i

. (16)

Similarly calculating the mean 〈σ2
i 〉, we can show that it equals s̃11. Therefore, the positional correlation

function is the sum of two decreasing geometric progressions:

gbij = 〈σ2
i σ

2
j 〉 − b2 = αxj−i

1 + βxj−i
2 , (17)

where α = s̃12s̃21, β = s̃13s̃31, x1 = λ2/λ1, x2 = λ3/λ1. To calculate the magnetic-positional correlation

function, we use the matrix S1 = diag(0, 1,−1) instead of the matrix S, which results in an equation for

gmb
ij analogous to Eq. (17):

gmb
ij = α1x

j−i
1 + β1x

j−i
2 . (18)

At h = 0 (in this case, the magnetization Mm also vanishes because spontaneous magnetization does

not arise in a one-dimensional chain at a zero temperature), it turns out that one of the coefficients α or

β in formula (17) vanishes (which one depends on the enumeration of roots λ2 and λ3 of the characteristic

equation), i.e., the positional correlation function in this case has the form of decreasing geometric progres-

sion. Magnetic-positional correlation function (18) also becomes a geometric progression at h = 0. But if

the ratio of the progression equals x1 in (17), then it equals x2 in (18), and vice versa. If h 6= 0, then all

four coefficients α, β, α1, and β1 in expressions (17) and (18) are nonzero.

We now consider the pseudochaotic approximation. We choose the quantity L such that the correlation

function gb12 equals zero for given values of the external field h, the temperature parameter K, and the

magnetic atom concentration b. According to the above, such a choice of L at h = 0 leads to all values of

the positional correlation function gbij vanishing, i.e., the impurity distribution in this case is uncorrelated

at any distance. If h 6= 0, then only the function gb12 vanishing no longer results in all gbij vanishing, but we

still can consider that the impurity distribution is more chaotic than at gb12 6= 0.

Therefore, we have the following result for the one-dimensional chain with nonmagnetic dilution. At

Mm = 0, the distribution of the nonmagnetic impurities in the pseudochaotic approximation becomes

uncorrelated at any interatomic distance, and the magnetic susceptibility at h = 0 calculated using the
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pseudochaotic approximation simultaneously coincides with the exact value. We now assume that a similar

situation holds not only for the one-dimensional chain with dilution but also for an arbitrary crystal lattice,

i.e., we assume that for the Ising model with nonmagnetic dilution on any crystal lattice in the region of

values of the parameters K, b, and h such that M = 0, the impurity distribution in the pseudochaotic

approximation is uncorrelated at any distance. In addition, we assume that the magnetic susceptibility

calculated on the boundary of the region M = 0 in this approximation coincides with the exact value of

the magnetic susceptibility for the Ising model with fixed immobile impurities. As shown below, there

are reasons to suppose that this assumption holds for the Ising model with nonmagnetic dilution on an

arbitrary Bethe lattice.

6. Bethe lattice with dilution

The Bethe lattice can be constructed as follows [4]. The central site is connected to q other sites. Each

of them is in turn connected to q− 1 new sites. Performing this procedure n times, we obtain the so-called

Cayley tree. The Bethe lattice is the inside part (which is far from the boundary points) of this graph as

n → ∞. We first consider the solution for the Ising model on the Bethe lattice with movable impurities,

which are in thermodynamic equilibrium with the matrix. Partition function (1) on the Bethe Lattice can

be calculated by the method based on constructing recurrence relations [4]. Applying this method yields

the result [5]

Mm = tanh
qx− h

q − 1
, b =

2y coshx+ cosh(2x) + e−2K

2y2e(1+γ)K + 4y coshx+ cosh(2x) + e−2K
,

µ = −kT log

(
2yqeq(1+γ)K

(
p

1− p

)
q−1

(1−M2
m)

(q−1)/2

)
,

(19)

where

y =
1

2
(1− e−2K)

sinh((qx− h)/(q − 1))

sinh((x− h)/(q − 1))
− coshx. (20)

These relations represent the parametric relations Mm = Mm(x, h), b = b(x, h,K), and µ = µ(x, h,K), and

the parameter x varies in the interval from h to the value of x∗ such that y vanishes. A detailed analysis of

these expressions for different values of γ was presented in [5], where it was shown that a nonzero solution for

Mm at h = 0 (i.e., spontaneous magnetization) exists only for b > bc(K), where the threshold concentration

bc(K) also depends on the parameter γ [5].

The positional correlation of two neighboring sites can be calculated using the formula

gb12 =
cosh(2x) + e−2K

2y2e(1+γ)K + 4y coshx+ cosh(2x) + e−2K
− b2. (21)

Similarly,

gmb
12 =

cosh(2x)− e−2K

2y2e(1+γ)K + 4y coshx+ cosh(2x) + e−2K
−M2

mb
2. (22)

In addition, the functions gb13 and gmb
13 were found in [5].

We assume that in the case of an arbitrary q, like for a one-dimensional chain, the positional and

magnetic-positional correlation functions are sums of two decreasing geometric progressions:

gbij = 〈σ2
i σ

2
j 〉 − b2 = αxj−i

1 + βxj−i
2 , gmb

ij = 〈σiσj〉 −M2
mb

2 = α1x
j−i
1 + β1x

j−i
2 . (23)

The coefficients α, β, α1, and β1 and the ratios of the progressions x1 and x2 can be found by equating

functions (23) to the correlation functions g12 and g13. The calculation shows [5] that at h = 0 and for
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0 < b < bc(K) (the spontaneous magnetization Mm = 0 in this region), the coefficients α and β1 (or β and

α1) vanish, i.e., the positional and magnetic-positional correlation functions have the form of decreasing

geometric progressions but with different ratios. In this case, in the region of existence of spontaneous

magnetization (for h = 0, bc(K) < b < 1, and K > Kc(1)), all four coefficients α, β, α1, and β1 are nonzero

in the general case.

We now pass to the pseudochaotic approximation, i.e., we chose the parameter γ such that the function

gb12 vanishes. We let γ0 denote this value of γ (depending on b, K, and h). The parameter γ0 is defined by

the relation

e(1+γ0)K =
1

2y2

(
cosh(2x) + e−2K

b2
− (4y coshx+ cosh(2x) + e−2K)

)
, (24)

where

b =
cosh(2x) + e−2K

2y coshx+ cosh(2x) + e−2K
. (25)

This implies that spontaneous magnetization can exist in the system only for b > bc(K) = 1/((q−1) tanhK),

i.e., the Curie temperature vanishes at b = bc = 1/(q − 1).

The magnetization has the form

Ma = tanh
qx− h

q − 1
, b =

tanh((qx − h)/(q − 1))− tanhx

sinh(2x)/(cosh(2x) + e−2K)− tanhx
, (26)

and x varies from x1 = h to a value x2 such that b = 1. If Ma = 0, i.e., h = 0 and K < Kc(b), then the

condition gb12 = 0 automatically leads to all the functions gbij vanishing. This result supports the above

proposed assumption. In this case, the value of the parameter γ0 does not depend on b and equals

γ̃0 =
1

K
log

2

1 + e−2K
− 1. (27)

Because gmb
11 = b and the magnetic-positional function is a decreasing geometric progression in this case,

we obtain gmb
ij = b(b tanhK)|j−i|. Differentiating the quantity Ma defined in (26) with respect to h, we find

the magnetic susceptibility at Ma = 0, i.e., for h = 0 and K < Kc(b),

χ = bc
1 + b tanhK

bc − b tanhK
, where bc =

1

q − 1
.

According to the above assumption, we obtain the exact value of the magnetic susceptibility for the Ising

model with immobile impurities on the Bethe lattice in the region M = 0.
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